\partial:∂\partial∂
\partial
\int:∫\int∫
\int
\iint:∬\iint∬
\iint
\oint:∮\oint∮
\oint
\rm {d}:d\rm {d}d
\rm {d}
\int_{\alpha(x)}^{\beta(x)}\frac{\partial{f(x,y)}}{\partial x}\rm dy +\beta'(x): ∫α(x)β(x)∂f(x,y)∂xdy+β′(x)\int_{\alpha(x)}^{\beta(x)}\frac{\partial{f(x,y)}}{\partial x}\rm dy +\beta'(x)∫α(x)β(x)∂x∂f(x,y)dy+β′(x)
\int_{\alpha(x)}^{\beta(x)}\frac{\partial{f(x,y)}}{\partial x}\rm dy +\beta'(x)
\mathop{\iint}\limits_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right )dxdy=\oint _LPdx+Qdy: ∬D(∂Q∂x−∂P∂y)dxdy=∮LPdx+Qdy\mathop{\iint}\limits_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right )dxdy=\oint _LPdx+QdyD∬(∂x∂Q−∂y∂P)dxdy=∮LPdx+Qdy
\mathop{\iint}\limits_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right )dxdy=\oint _LPdx+Qdy