Spark:DataFrame保存为parquet文件和永久表

DataFrame和parquet文件

以下spark表示SparkSession对象
df表示DataFrame对象

从parquet文件加载DataFrame:

val df = spark.read.parquet("input_file_path.parquet")

还可以直接在文件上运行 SQL 查询来加载 DataFrame :

val df = spark.sql("SELECT col1, col2 FROM parquet.`input_file_path.parquet`")

将DataFrame持久化到parquet文件:

df.write.parquet("output_file_path.parquet")

如果指定的输出文件存在默认会报错,也可以指定为其他模式,支持的模式在org.apache.spark.sql.SaveMode下,分为以下模式:

  • Append:追加模式
    要注意追加表和原表的结构和数据类型。不匹配会报错,尤其是数据类型,甚至可能造成文件破坏。
  • ErrorIfExists:存在则报错,默认。
  • Ignore:若存在什么都不做,也不报错。
  • Overwrite:若存在则覆盖。
df.write.mode(SaveMode.Append).parquet("output_file_path.parquet")

将DataFrame保存为hive永久表

查看spark加载的永久表:

spark.catalog.listTables.show
+----+--------+-----------+---------+-----------+
|name|database|description|tableType|isTemporary|
+----+--------+-----------+---------+-----------+
| ymn| default|       null|  MANAGED|      false|
+----+--------+-----------+---------+-----------+

可以直接用spark的table方法加载已经保存的永久表:

val df = spark.table("ymn")

保存为永久表:

df.write.saveAsTable("table_name")

如果没有配置hive支持,此表的数据默认是存储在当前目录下的spark-warehouse文件夹下,spark-warehouse文件夹下的每个子文件夹是一张表,子文件夹名为表名,里面有parquet文件是表的数据文件。

同时会在当前目录生成一个metastore_db文件夹和一个derby.log日志文件,metastore_db文件夹就是一个数据库名为metastore_db的derby(一个纯java的apache的开源数据库管理系统)数据库,里面存放着spark永久表的元数据信息。

其实就跟hive一样:derby数据库存放元数据信息,spark-warehouse存放数据。

只不过这里的数据不是hive默认的文本文件,而是指定了SerDe(序列化反序列化)的parquet文件。

posted @ 2019-01-04 17:25  xuejianbest  阅读(1103)  评论(0编辑  收藏  举报