Go语言学习之9 网络协议TCP、Redis与聊天室

主要内容

1. Tcp编程
2. redis使用

1. Tcp编程

(1)简介

      Golang是谷歌设计开发的语言,在Golang的设计之初就把高并发的性能作为Golang的主要特性之一,也是面向大规模后端服务程序。在服务器端网络通信是必不可少的也是至关重要的一部分。Golang内置的包例如net、net/http中的底层就是对TCP socket方法的封装。

    TCP简介:

1 Golang是谷歌设计开发的语言,在Golang的设计之初就把高并发的性能作为Golang的主要特性之一,也是面向大规模后端服务程序。在服务器端网络通信是必不可少的也是至关重要的一部分。Golang内置的包例如net、net/http中的底层就是对TCP socket方法的封装。
2 网络编程方面,我们最常用的就是tcp socket编程了,在posix标准出来后,socket在各大主流OS平台上都得到了很好的支持。关于tcp programming,最好的资料莫过于W. Richard Stevens 的网络编程圣经《UNIX网络 编程 卷1:套接字联网API》 了,书中关于tcp socket接口的各种使用、行为模式、异常处理讲解的十分细致。
TCP简介

      Go是自带runtime的跨平台编程语言,Go中暴露给语言使用者的tcp socket api是建立OS原生tcp socket接口之上的。由于Go runtime调度的需要,golang tcp socket接口在行为特点与异常处理方面与OS原生接口有着一些差别。

(2)模型

      从tcp socket诞生后,网络编程架构模型也几经演化,大致是:“每进程一个连接” –> “每线程一个连接” –> “Non-Block + I/O多路复用(linux epoll/windows iocp/freebsd darwin kqueue/solaris Event Port)”。伴随着模型的演化,服务程序愈加强大,可以支持更多的连接,获得更好的处理性能

目前主流web server一般均采用的都是”Non-Block + I/O多路复用”(有的也结合了多线程、多进程)。不过I/O多路复用也给使用者带来了不小的复杂度,以至于后续出现了许多高性能的I/O多路复用框架, 比如libevent、libev、libuv等,以帮助开发者简化开发复杂性,降低心智负担。不过Go的设计者似乎认为I/O多路复用的这种通过回调机制割裂控制流 的方式依旧复杂,且有悖于“一般逻辑”设计,为此Go语言将该“复杂性”隐藏在Runtime中了:Go开发者无需关注socket是否是 non-block的,也无需亲自注册文件描述符的回调,只需在每个连接对应的goroutine中以“block I/O”的方式对待socket处理即可,这可以说大大降低了开发人员的心智负担。一个典型的Go server端程序大致如下:

 1 //go-tcpsock/server.go
 2 func HandleConn(conn net.Conn) {
 3     defer conn.Close()
 4 
 5     for {
 6         // read from the connection
 7         // ... ...
 8         // write to the connection
 9         //... ...
10     }
11 }
12 
13 func main() {
14     listen, err := net.Listen("tcp", ":8888")
15     if err != nil {
16         fmt.Println("listen error: ", err)
17         return
18     }
19 
20     for {
21         conn, err := listen.Accept()
22         if err != nil {
23             fmt.Println("accept error: ", err)
24             break
25         }
26 
27         // start a new goroutine to handle the new connection
28         go HandleConn(conn)
29     }
30 }
Go server编程

     (重点)用户层眼中看到的goroutine中的“block socket”,实际上是通过Go runtime中的netpoller通过Non-block socket + I/O多路复用机制“模拟”出来的,真实的underlying socket实际上是non-block的,只是runtime拦截了底层socket系统调用的错误码,并通过netpoller和goroutine 调度让goroutine“阻塞”在用户层得到的Socket fd上。比如:当用户层针对某个socket fd发起read操作时,如果该socket fd中尚无数据,那么runtime会将该socket fd加入到netpoller中监听,同时对应的goroutine被挂起,直到runtime收到socket fd 数据ready的通知,runtime才会重新唤醒等待在该socket fd上准备read的那个Goroutine。而这个过程从Goroutine的视角来看,就像是read操作一直block在那个socket fd上似的。

   关于netpoller可以看下这为博主博客:http://www.opscoder.info/golang_netpoller.html

(3)TCP连接的建立

      众所周知,TCP Socket的连接的建立需要经历客户端和服务端的三次握手的过程。连接建立过程中,服务端是一个标准的Listen + Accept的结构(可参考上面的代码),而在客户端Go语言使用net.Dial()或net.DialTimeout()进行连接建立。

      服务端的处理流程: a. 监听端口     b. 接收客户端的链接     c. 创建goroutine,处理该链接

      客户端的处理流程: a. 建立与服务端的链接     b. 进行数据收发     c. 关闭链接

      通过客户端可服务端实现一个简单的聊天系统?

      客户端:

 1 package main
 2 
 3 import (
 4     "bufio"
 5     "fmt"
 6     "net"
 7     "os"
 8     "strings"
 9 )
10 
11 func main() {
12     fmt.Println("start client...")
13     conn, err := net.Dial("tcp", "localhost:50000")
14     if err != nil {
15         fmt.Println("Error dialing", err.Error())
16         return
17     }
18 
19     defer conn.Close()
20     inputReader := bufio.NewReader(os.Stdin)
21     for {
22         input, _ := inputReader.ReadString('\n')
23         trimmedInput := strings.Trim(input, "\r\n")
24         if trimmedInput == "Q" {
25             return
26         }
27         _, err = conn.Write([]byte(trimmedInput))
28         if err != nil {
29             return
30         }
31     }
32 }
client.go

      服务端:

 1 package main
 2 
 3 import (
 4     "fmt"
 5     "net"
 6     "io"
 7 )
 8 func main() {
 9     fmt.Println("start server...")
10     listen, err := net.Listen("tcp", "0.0.0.0:50000")
11     if err != nil {
12         fmt.Println("listen failed, err:", err)
13         return
14     }
15     for {
16         conn, err := listen.Accept()
17         if err != nil {
18             fmt.Println("accept failed, err:", err)
19             continue
20         }
21         go process(conn)
22     }
23 }
24 
25 func process(conn net.Conn) {
26     defer conn.Close()
27 
28     for {
29         buf := make([]byte, 10)
30         _, err := conn.Read(buf)
31 
32         if err == io.EOF {  //当客户端断开的时候就无法读到数据
33             fmt.Println("read end")
34             return
35         }
36 
37         if err != nil {
38             fmt.Println("read err:", err)
39             return
40         }
41         fmt.Println("read: ", string(buf))
42     }
43 }
server.go

     阻塞Dial:

1 conn, err := net.Dial("tcp", "www.baidu.com:80")
2 if err != nil {
3     //handle error
4 }
5 //read or write on conn
阻塞Dial

      超时机制的Dial:

1 conn, err := net.DialTimeout("tcp", "www.baidu.com:80", 2*time.Second)
2 if err != nil {
3     //handle error
4 }
5 //read or write on conn
超时Dial

      对于客户端而言,连接的建立会遇到如下几种情形:

  • 网络不可达或对方服务未启动

      如果传给Dial的Addr是可以立即判断出网络不可达,或者Addr中端口对应的服务没有启动,端口未被监听,Dial会几乎立即返回错误,比如:

 1 package main 
 2 
 3 import (
 4     "net"
 5     "log"
 6 )
 7 
 8 func main() {
 9     log.Println("begin dial...")
10     conn, err := net.Dial("tcp", ":8888")
11     if err != nil {
12         log.Println("dial error:", err)
13         return
14     }
15     defer conn.Close()
16     log.Println("dial ok")
17 }
网络不可达或对方服务未启动

      如果本机8888端口未有服务程序监听,那么执行上面程序,Dial会很快返回错误:

      注:在Centos6.5上测试,下同。

  • 对方服务的listen backlog满 

      还有一种场景就是对方服务器很忙,瞬间有大量client端连接尝试向server建立,server端的listen backlog队列满,server accept不及时((即便不accept,那么在backlog数量范畴里面,connect都会是成功的,因为new conn已经加入到server side的listen queue中了,accept只是从queue中取出一个conn而已),这将导致client端Dial阻塞。我们还是通过例子感受Dial的行为特点:

      服务端代码:

 1 package main 
 2 
 3 import (
 4     "net"
 5     "log"
 6     "time"
 7 )
 8 
 9 func main() {
10     l, err := net.Listen("tcp", ":8888")
11     if err != nil {
12         log.Println("error listen:", err)
13         return
14     }
15     defer l.Close()
16     log.Println("listen ok")
17 
18     var i int
19     for {
20         time.Sleep(time.Second * 10)
21         if _, err := l.Accept(); err != nil {
22             log.Println("accept error:", err)
23             break
24         }
25         i++
26         log.Printf("%d: accept a new connection\n", i)
27     }
28 }
server.go

      客户端代码:

 1 package main 
 2 
 3 import (
 4     "net"
 5     "log"
 6     "time"
 7 )
 8 
 9 func establishConn(i int) net.Conn {
10     conn, err := net.Dial("tcp", ":8888")
11     if err != nil {
12         log.Printf("%d: dial error: %s", i, err)
13         return nil
14     }
15     log.Println(i, ":connect to server ok")
16     return conn
17 }
18 
19 func main() {
20     var sl []net.Conn
21 
22     for i := 1; i < 1000; i++ {
23         conn := establishConn(i)
24         if conn != nil {
25             sl = append(sl, conn)
26         }
27     }
28 
29     time.Sleep(time.Second * 10000)
30 }
client.go

      经过测试在Client初始时成功地一次性建立了131个连接,然后后续每阻塞近1s才能成功建立一条连接。也就是说在server端 backlog满时(未及时accept),客户端将阻塞在Dial上,直到server端进行一次accept。

      如果server一直不accept,client端会一直阻塞么?我们去掉accept后的结果是:在Darwin下,client端会阻塞大 约1分多钟才会返回timeout。而如果server运行在ubuntu 14.04上,client似乎一直阻塞,我等了10多分钟依旧没有返回。 阻塞与否看来与server端的网络实现和设置有关。

      注:在Centos6.5上测试,发现注释掉server端的accept,client一次建立131个连接后,后面还会每隔1s建立一个链接。

  • 网络延迟较大,Dial阻塞并超时

      如果网络延迟较大,TCP握手过程将更加艰难坎坷(各种丢包),时间消耗的自然也会更长。Dial这时会阻塞,如果长时间依旧无法建立连接,则Dial也会返回“ getsockopt: operation timed out”错误。

      在连接建立阶段,多数情况下,Dial是可以满足需求的,即便阻塞一小会儿。但对于某些程序而言,需要有严格的连接时间限定,如果一定时间内没能成功建立连接,程序可能会需要执行一段“异常”处理逻辑,为此我们就需要DialTimeout了。下面的例子将Dial的最长阻塞时间限制在2s内,超出这个时长,Dial将返回timeout error:

 1 package main 
 2 
 3 import (
 4     "net"
 5     "log"
 6     "time"
 7 )
 8 
 9 func main() {
10     log.Println("begin dial...")
11     conn, err := net.DialTimeout("tcp", "192.168.30.134:8888", 2*time.Second)
12     if err != nil {
13         log.Println("dial error:", err)
14         return
15     }
16     defer conn.Close()
17     log.Println("dial ok")
18 }
client_timeout.go

      执行结果如下,需要模拟一个网络延迟大的环境:

1 $go run client_timeout.go
2 2015/11/17 09:28:34 begin dial...
3 2015/11/17 09:28:36 dial error: dial tcp 104.236.176.96:80: i/o timeout

(4)Socket读写

      连接建立起来后,我们就要在conn上进行读写,以完成业务逻辑。前面说过Go runtime隐藏了I/O多路复用的复杂性。语言使用者只需采用goroutine+Block I/O的模式即可满足大部分场景需求。Dial成功后,方法返回一个Conn接口类型变量值。

      客户端Dial建立连接:

func Dial(network, address string) (Conn, error)
 1 type Conn interface {
 2         // Read reads data from the connection.
 3         // Read can be made to time out and return an Error with Timeout() == true
 4         // after a fixed time limit; see SetDeadline and SetReadDeadline.
 5         Read(b []byte) (n int, err error)
 6 
 7         // Write writes data to the connection.
 8         // Write can be made to time out and return an Error with Timeout() == true
 9         // after a fixed time limit; see SetDeadline and SetWriteDeadline.
10         Write(b []byte) (n int, err error)
11 
12         // Close closes the connection.
13         // Any blocked Read or Write operations will be unblocked and return errors.
14         Close() error
15 
16         // LocalAddr returns the local network address.
17         LocalAddr() Addr
18 
19         // RemoteAddr returns the remote network address.
20         RemoteAddr() Addr
21 
22         // SetDeadline sets the read and write deadlines associated
23         // with the connection. It is equivalent to calling both
24         // SetReadDeadline and SetWriteDeadline.
25         //
26         // A deadline is an absolute time after which I/O operations
27         // fail with a timeout (see type Error) instead of
28         // blocking. The deadline applies to all future and pending
29         // I/O, not just the immediately following call to Read or
30         // Write. After a deadline has been exceeded, the connection
31         // can be refreshed by setting a deadline in the future.
32         //
33         // An idle timeout can be implemented by repeatedly extending
34         // the deadline after successful Read or Write calls.
35         //
36         // A zero value for t means I/O operations will not time out.
37         SetDeadline(t time.Time) error
38 
39         // SetReadDeadline sets the deadline for future Read calls
40         // and any currently-blocked Read call.
41         // A zero value for t means Read will not time out.
42         SetReadDeadline(t time.Time) error
43 
44         // SetWriteDeadline sets the deadline for future Write calls
45         // and any currently-blocked Write call.
46         // Even if write times out, it may return n > 0, indicating that
47         // some of the data was successfully written.
48         // A zero value for t means Write will not time out.
49         SetWriteDeadline(t time.Time) error
50 }
Conn接口

      服务器端Listen监听客户端连接:

func Listen(network, address string) (Listener, error)
 1 type Listener interface {
 2         // Accept waits for and returns the next connection to the listener.
 3         Accept() (Conn, error)
 4 
 5         // Close closes the listener.
 6         // Any blocked Accept operations will be unblocked and return errors.
 7         Close() error
 8 
 9         // Addr returns the listener's network address.
10         Addr() Addr
11 }
Listener 接口

      从Conn接口中有Read,Write,Close等方法。

 1)conn.Read的特点

  • Socket中无数据

      连接建立后,如果对方未发送数据到socket,接收方(Server)会阻塞在Read操作上,这和前面提到的“模型”原理是一致的。执行该Read操作的goroutine也会被挂起。runtime会监视该socket,直到其有数据才会重新调度该socket对应的Goroutine完成read。例子对应的代码文件:go-tcpsock/read_write下的client1.go和server1.go。

 1 package main
 2 
 3 import (
 4     "log"
 5     "net"
 6     "time"
 7 )
 8 
 9 func main() {
10     log.Println("begin dial...")
11     conn, err := net.Dial("tcp", ":8888")
12     if err != nil {
13         log.Println("dial error:", err)
14         return
15     }
16     defer conn.Close()
17     log.Println("dial ok")
18     time.Sleep(time.Second * 10000)
19 }
client1.go
 1 //server.go
 2 
 3 package main
 4 
 5 import (
 6     "log"
 7     "net"
 8 )
 9 
10 func handleConn(c net.Conn) {
11     defer c.Close()
12     for {
13         // read from the connection
14         var buf = make([]byte, 10)
15         log.Println("start to read from conn")
16         n, err := c.Read(buf)
17         if err != nil {
18             log.Println("conn read error:", err)
19             return
20         }
21         log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
22     }
23 }
24 
25 func main() {
26     l, err := net.Listen("tcp", ":8888")
27     if err != nil {
28         log.Println("listen error:", err)
29         return
30     }
31 
32     for {
33         c, err := l.Accept()
34         if err != nil {
35             log.Println("accept error:", err)
36             break
37         }
38         // start a new goroutine to handle
39         // the new connection.
40         log.Println("accept a new connection")
41         go handleConn(c)
42     }
43 }
server1.go
  • Socket中有部分数据

      如果socket中有部分数据,且长度小于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回,而不是等待所有期望数据全部读取后再返回。

      客户端:

 1 //client2.go
 2 package main
 3 
 4 import (
 5     "fmt"
 6     "log"
 7     "net"
 8     "os"
 9     "time"
10 )
11 
12 func main() {
13     if len(os.Args) <= 1 {
14         fmt.Println("usage: go run client2.go YOUR_CONTENT")
15         return
16     }
17     log.Println("begin dial...")
18     conn, err := net.Dial("tcp", ":8888")
19     if err != nil {
20         log.Println("dial error:", err)
21         return
22     }
23     defer conn.Close()
24     log.Println("dial ok")
25 
26     time.Sleep(time.Second * 2)
27     data := os.Args[1]
28     conn.Write([]byte(data))
29 
30     time.Sleep(time.Second * 10000)
31 }
client2.go

      服务端:

 1 //server2.go
 2 package main
 3 
 4 import (
 5     "log"
 6     "net"
 7 )
 8 
 9 func handleConn(c net.Conn) {
10     defer c.Close()
11     for {
12         // read from the connection
13         var buf = make([]byte, 10)
14         log.Println("start to read from conn")
15         n, err := c.Read(buf)
16         if err != nil {
17             log.Println("conn read error:", err)
18             return
19         }
20         log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
21     }
22 }
23 
24 func main() {
25     l, err := net.Listen("tcp", ":8888")
26     if err != nil {
27         log.Println("listen error:", err)
28         return
29     }
30 
31     for {
32         c, err := l.Accept()
33         if err != nil {
34             log.Println("accept error:", err)
35             break
36         }
37         // start a new goroutine to handle
38         // the new connection.
39         log.Println("accept a new connection")
40         go handleConn(c)
41     }
42 }
server2.go

      通过client2.go发送”hi”到Server端:

F:\Go\project\src\go_dev\go-tcpsock\read_write>go run client2.go hi
2019/03/04 22:43:41 begin dial...
2019/03/04 22:43:41 dial ok

F:\Go\project\src\go_dev\go-tcpsock\read_write>go run server2.go
2019/03/04 22:43:41 accept a new connection
2019/03/04 22:43:41 start to read from conn
2019/03/04 22:43:43 read 2 bytes, content is hi
2019/03/04 22:43:43 start to read from conn
  • Socket中有足够数据

      如果socket中有数据,且长度大于等于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回。这个情景是最符合我们对Read的期待的了:Read将用Socket中的数据将我们传入的slice填满后返回:n = 10, err = nil。

      执行结果:

F:\Go\project\src\go_dev\go-tcpsock\read_write>go run client2.go abcdefghij123
2019/03/04 22:50:01 begin dial...
2019/03/04 22:50:01 dial ok

F:\Go\project\src\go_dev\go-tcpsock\read_write>go run server2.go
2019/03/04 22:50:01 accept a new connection
2019/03/04 22:50:01 start to read from conn
2019/03/04 22:50:03 read 10 bytes, content is abcdefghij
2019/03/04 22:50:03 start to read from conn
2019/03/04 22:50:03 read 3 bytes, content is 123
2019/03/04 22:50:03 start to read from conn

      结果分析: client端发送的内容长度为13个字节,Server端Read buffer的长度为10,因此Server Read第一次返回时只会读取10个字节;Socket中还剩余3个字节数据,Server再次Read时会把剩余数据读出(如:情形2)。

  • Socket关闭

      如果client端主动关闭了socket,那么Server的Read将会读到什么呢?

      这里分为“有数据关闭”和“无数据关闭”:

      有数据关闭是指在client关闭时,socket中还有server端未读取的数据。当client端close socket退出后,server依旧没有开始Read,10s后第一次Read成功读出了所有的数据,当第二次Read时,由于client端 socket关闭,Read返回EOF error。

      客户端:

 1 //client3.go
 2 package main
 3 
 4 import (
 5     "fmt"
 6     "log"
 7     "net"
 8     "os"
 9     "time"
10 )
11 
12 func main() {
13     if len(os.Args) <= 1 {
14         fmt.Println("usage: go run client3.go YOUR_CONTENT")
15         return
16     }
17     log.Println("begin dial...")
18     conn, err := net.Dial("tcp", ":8888")
19     if err != nil {
20         log.Println("dial error:", err)
21         return
22     }
23     defer conn.Close()
24     log.Println("dial ok")
25 
26     time.Sleep(time.Second * 2)
27     data := os.Args[1]
28     conn.Write([]byte(data))
29 }
client3.go

          服务端:

 1 //server3.go
 2 
 3 package main
 4 
 5 import (
 6     "log"
 7     "net"
 8     "time"
 9 )
10 
11 func handleConn(c net.Conn) {
12     defer c.Close()
13     for {
14         // read from the connection
15         time.Sleep(10 * time.Second)
16         var buf = make([]byte, 10)
17         log.Println("start to read from conn")
18         n, err := c.Read(buf)
19         if err != nil {
20             log.Println("conn read error:", err)
21             return
22         }
23         log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
24     }
25 }
26 
27 func main() {
28     l, err := net.Listen("tcp", ":8888")
29     if err != nil {
30         log.Println("listen error:", err)
31         return
32     }
33 
34     for {
35         c, err := l.Accept()
36         if err != nil {
37             log.Println("accept error:", err)
38             break
39         }
40         // start a new goroutine to handle
41         // the new connection.
42         log.Println("accept a new connection")
43         go handleConn(c)
44     }
45 }
server3.go

      执行结果:

F:\Go\project\src\go_dev\go-tcpsock\read_write>go run client3.go hello
2019/03/04 22:55:49 begin dial...
2019/03/04 22:55:49 dial ok

F:\Go\project\src\go_dev\go-tcpsock\read_write>go run server3.go
2019/03/04 22:55:49 accept a new connection
2019/03/04 22:55:59 start to read from conn
2019/03/04 22:55:59 read 5 bytes, content is hello
2019/03/04 22:56:09 start to read from conn
2019/03/04 22:56:09 conn read error: EOF

      结果分析:从输出结果来看,当client端close socket退出后,server3依旧没有开始Read,10s后第一次Read成功读出了5个字节的数据,当第二次Read时,由于client端 socket关闭,Read返回EOF error。

      通过上面这个例子,我们也可以猜测出“无数据关闭”情形下的结果,那就是Read直接返回EOF error。

  • 读取操作超时

      有些场合对Read的阻塞时间有严格限制,在这种情况下,Read的行为到底是什么样的呢?在返回超时错误时,是否也同时Read了一部分数据了呢? 这个实验比较难于模拟,下面的测试结果也未必能反映出所有可能结果。

      客户端:

 1 //client4.go
 2 package main
 3 
 4 import (
 5     "log"
 6     "net"
 7     "time"
 8 )
 9 
10 func main() {
11     log.Println("begin dial...")
12     conn, err := net.Dial("tcp", ":8888")
13     if err != nil {
14         log.Println("dial error:", err)
15         return
16     }
17     defer conn.Close()
18     log.Println("dial ok")
19 
20     data := make([]byte, 65536)
21     conn.Write(data)
22 
23     time.Sleep(time.Second * 10000)
24 }
client4.go

      服务端:

 1 //server4.go
 2 
 3 package main
 4 
 5 import (
 6     "log"
 7     "net"
 8     "time"
 9 )
10 
11 func handleConn(c net.Conn) {
12     defer c.Close()
13     for {
14         // read from the connection
15         time.Sleep(10 * time.Second)
16         var buf = make([]byte, 65536)
17         log.Println("start to read from conn")
18         //c.SetReadDeadline(time.Now().Add(time.Microsecond * 10))//conn read 0 bytes,  error: read tcp 127.0.0.1:8888->127.0.0.1:60763: i/o timeout
19         c.SetReadDeadline(time.Now().Add(time.Microsecond * 10))
20         n, err := c.Read(buf)
21         if err != nil {
22             log.Printf("conn read %d bytes,  error: %s", n, err)
23             if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
24                 continue
25             }
26             return
27         }
28 
29         log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
30     }
31 }
32 
33 func main() {
34     l, err := net.Listen("tcp", ":8888")
35     if err != nil {
36         log.Println("listen error:", err)
37         return
38     }
39 
40     for {
41         c, err := l.Accept()
42         if err != nil {
43             log.Println("accept error:", err)
44             break
45         }
46         // start a new goroutine to handle
47         // the new connection.
48         log.Println("accept a new connection")
49         go handleConn(c)
50     }
51 }
server4.go

      在Server端我们通过Conn的SetReadDeadline方法设置了10微秒的读超时时间。

      虽然每次都是10微秒超时,但结果不同,第一次Read超时,读出数据长度为0;第二次读取所有数据成功,没有超时。反复执行了多次,没能出现“读出部分数据且返回超时错误”的情况。 

 2)conn.Write的特点

  • 成功写

      前面例子着重于Read,client端在Write时并未判断Write的返回值。所谓“成功写”指的就是Write调用返回的n与预期要写入的数据长度相等,且error = nil。这是我们在调用Write时遇到的最常见的情形,这里不再举例了。

  • 写阻塞

      TCP连接通信两端的OS都会为该连接保留数据缓冲,一端调用Write后,实际上数据是写入到OS的协议栈的数据缓冲的。TCP是全双工通信,因此每个方向都有独立的数据缓冲。当发送方将对方的接收缓冲区以及自身的发送缓冲区写满后,Write就会阻塞。

      客户端:

 1 //client5.go
 2 package main
 3 
 4 import (
 5     "log"
 6     "net"
 7     "time"
 8 )
 9 
10 func main() {
11     log.Println("begin dial...")
12     conn, err := net.Dial("tcp", ":8888")
13     if err != nil {
14         log.Println("dial error:", err)
15         return
16     }
17     defer conn.Close()
18     log.Println("dial ok")
19 
20     data := make([]byte, 65536)
21     var total int
22     for {
23         n, err := conn.Write(data)
24         if err != nil {
25             total += n
26             log.Printf("write %d bytes, error:%s\n", n, err)
27             break
28         }
29         total += n
30         log.Printf("write %d bytes this time, %d bytes in total\n", n, total)
31     }
32 
33     log.Printf("write %d bytes in total\n", total)
34     time.Sleep(time.Second * 10000)
35 }
client5.go

      服务端:

 1 //server5.go
 2 
 3 package main
 4 
 5 import (
 6     "log"
 7     "net"
 8     "time"
 9 )
10 
11 func handleConn(c net.Conn) {
12     defer c.Close()
13     time.Sleep(time.Second * 10)
14     for {
15         // read from the connection
16         time.Sleep(5 * time.Second)
17         var buf = make([]byte, 60000)
18         log.Println("start to read from conn")
19         n, err := c.Read(buf)
20         if err != nil {
21             log.Printf("conn read %d bytes,  error: %s", n, err)
22             if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
23                 continue
24             }
25             break
26         }
27 
28         log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
29     }
30 }
31 
32 func main() {
33     l, err := net.Listen("tcp", ":8888")
34     if err != nil {
35         log.Println("listen error:", err)
36         return
37     }
38 
39     for {
40         c, err := l.Accept()
41         if err != nil {
42             log.Println("accept error:", err)
43             break
44         }
45         // start a new goroutine to handle
46         // the new connection.
47         log.Println("accept a new connection")
48         go handleConn(c)
49     }
50 }
server5.go        

      执行结果:

[root@centos tcp]# go run client5.go
2019/03/04 23:30:18 begin dial...
2019/03/04 23:30:18 dial ok
2019/03/04 23:30:18 write 65536 bytes this time, 65536 bytes in total
2019/03/04 23:30:18 write 65536 bytes this time, 131072 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 196608 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 262144 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 327680 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 393216 bytes in total

2019/03/04 23:30:39 write 65536 bytes this time, 458752 bytes in total
2019/03/04 23:30:39 write 65536 bytes this time, 524288 bytes in total

[root@centos tcp]# go run server5.go
2019/03/04 23:30:18 accept a new connection
2019/03/04 23:30:33 start to read from conn
2019/03/04 23:30:33 read 60000 bytes, content is
2019/03/04 23:30:38 start to read from conn
2019/03/04 23:30:38 read 60000 bytes, content is
2019/03/04 23:30:43 start to read from conn
2019/03/04 23:30:43 read 60000 bytes, content is

      Server5在前10s中并不Read数据,因此当client5一直尝试写入时,写到一定量后就会发生阻塞。

      在Centos6.5上测试,这个size大约在 393216 bytes。后续当server5每隔5s进行Read时,OS socket缓冲区腾出了空间,client5就又可以写入。

  • 写入部分数据

      Write操作存在写入部分数据的情况,比如上面例子中,当client端输出日志停留在“2019/03/04 23:30:39 write 65536 bytes this time, 524288 bytes in total”时,我们杀掉server5,这时我们会看到client5输出以下日志:

[root@centos tcp]# go run client5.go
2019/03/04 23:30:18 begin dial...
2019/03/04 23:30:18 dial ok
2019/03/04 23:30:18 write 65536 bytes this time, 65536 bytes in total
2019/03/04 23:30:18 write 65536 bytes this time, 131072 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 196608 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 262144 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 327680 bytes in total
2019/03/04 23:30:19 write 65536 bytes this time, 393216 bytes in total

2019/03/04 23:30:39 write 65536 bytes this time, 458752 bytes in total
2019/03/04 23:30:39 write 65536 bytes this time, 524288 bytes in total
2019/03/04 23:30:45 write 49152 bytes, error:write tcp 127.0.0.1:37294->127.0.0.1:8888: write: connection reset by peer
2019/03/04 23:30:45 write 573440 bytes in total

      显然Write并非在 524288 bytes 这个地方阻塞的,而是后续又写入49152 bytes 后发生了阻塞,server端socket关闭后,我们看到Wrote返回er != nil且n = 49152,程序需要对这部分写入的49152 字节做特定处理。

  •  写入超时

      如果非要给Write增加一个期限,那我们可以调用SetWriteDeadline方法。我们copy一份client5.go,形成client6.go,在client6.go的Write之前增加一行timeout设置代码:      

conn.SetWriteDeadline(time.Now().Add(time.Microsecond * 10))
 1 //client6.go
 2 package main
 3 
 4 import (
 5     "log"
 6     "net"
 7     "time"
 8 )
 9 
10 func main() {
11     log.Println("begin dial...")
12     conn, err := net.Dial("tcp", ":8888")
13     if err != nil {
14         log.Println("dial error:", err)
15         return
16     }
17     defer conn.Close()
18     log.Println("dial ok")
19 
20     data := make([]byte, 65536)
21     var total int
22     for {
23         conn.SetWriteDeadline(time.Now().Add(time.Microsecond * 10))
24         n, err := conn.Write(data)
25         if err != nil {
26             total += n
27             log.Printf("write %d bytes, error:%s\n", n, err)
28             break
29         }
30         total += n
31         log.Printf("write %d bytes this time, %d bytes in total\n", n, total)
32     }
33 
34     log.Printf("write %d bytes in total\n", total)
35     time.Sleep(time.Second * 10000)
36 }
client6.go

      启动server6.go,启动client6.go,我们可以看到写入超时的情况下,Write的返回结果:

[root@centos tcp]# go run client6.go
2019/03/04 23:46:33 begin dial...
2019/03/04 23:46:33 dial ok
2019/03/04 23:46:33 write 65536 bytes this time, 65536 bytes in total
2019/03/04 23:46:33 write 65536 bytes this time, 131072 bytes in total
2019/03/04 23:46:33 write 49152 bytes, error:write tcp 127.0.0.1:37295->127.0.0.1:8888: i/o timeout
2019/03/04 23:46:33 write 180224 bytes in total

      可以看到在写入超时时,依旧存在部分数据写入的情况。

      综上例子,虽然Go给我们提供了阻塞I/O的便利,但在调用Read和Write时依旧要综合需要方法返回的n和err的结果,以做出正确处理。net.conn实现了io.Reader和io.Writer接口,因此可以试用一些wrapper包进行socket读写,比如bufio包下面的Writer和Reader、io/ioutil下的函数等。

(5)Goroutine safe

      基于goroutine的网络架构模型,存在在不同goroutine间共享conn的情况,那么conn的读写是否是goroutine safe的呢?在深入这个问题之前,我们先从应用意义上来看read操作和write操作的goroutine-safe必要性。
      对于read操作而言,由于TCP是面向字节流,conn.Read无法正确区分数据的业务边界,因此多个goroutine对同一个conn进行read的意义不大,goroutine读到不完整的业务包反倒是增加了业务处理的难度。对与Write操作而言,倒是有多个goroutine并发写的情况。不过conn读写是否goroutine-safe的测试不是很好做,我们先深入一下runtime代码,先从理论上给这个问题定个性:

      net.conn只是*netFD的wrapper结构,最终Write和Read都会落在其中的fd上:

type conn struct {
    fd *netFD
}

      netFD在不同平台上有着不同的实现,我们以net/fd_unix.go中的netFD为例:

// Network file descriptor.
type netFD struct {
    // locking/lifetime of sysfd + serialize access to Read and Write methods
    fdmu fdMutex

    // immutable until Close
    sysfd       int
    family      int
    sotype      int
    isConnected bool
    net         string
    laddr       Addr
    raddr       Addr

    // wait server
    pd pollDesc
}

      我们看到netFD中包含了一个runtime实现的fdMutex类型字段,从注释上来看,该fdMutex用来串行化对该netFD对应的sysfd的Write和Read操作。从这个注释上来看,所有对conn的Read和Write操作都是有fdMutex互斥的,从netFD的Read和Write方法的实现也证实了这一点:

 1 func (fd *netFD) Read(p []byte) (n int, err error) {
 2     if err := fd.readLock(); err != nil {
 3         return 0, err
 4     }
 5     defer fd.readUnlock()
 6     if err := fd.pd.PrepareRead(); err != nil {
 7         return 0, err
 8     }
 9     for {
10         n, err = syscall.Read(fd.sysfd, p)
11         if err != nil {
12             n = 0
13             if err == syscall.EAGAIN {
14                 if err = fd.pd.WaitRead(); err == nil {
15                     continue
16                 }
17             }
18         }
19         err = fd.eofError(n, err)
20         break
21     }
22     if _, ok := err.(syscall.Errno); ok {
23         err = os.NewSyscallError("read", err)
24     }
25     return
26 }
27 
28 func (fd *netFD) Write(p []byte) (nn int, err error) {
29     if err := fd.writeLock(); err != nil {
30         return 0, err
31     }
32     defer fd.writeUnlock()
33     if err := fd.pd.PrepareWrite(); err != nil {
34         return 0, err
35     }
36     for {
37         var n int
38         n, err = syscall.Write(fd.sysfd, p[nn:])
39         if n > 0 {
40             nn += n
41         }
42         if nn == len(p) {
43             break
44         }
45         if err == syscall.EAGAIN {
46             if err = fd.pd.WaitWrite(); err == nil {
47                 continue
48             }
49         }
50         if err != nil {
51             break
52         }
53         if n == 0 {
54             err = io.ErrUnexpectedEOF
55             break
56         }
57     }
58     if _, ok := err.(syscall.Errno); ok {
59         err = os.NewSyscallError("write", err)
60     }
61     return nn, err
62 }
Read Write

      每次Write操作都是受lock保护,直到此次数据全部write完。因此在应用层面,要想保证多个goroutine在一个conn上write操作的Safe,需要一次write完整写入一个“业务包”;一旦将业务包的写入拆分为多次write,那就无法保证某个Goroutine的某“业务包”数据在conn发送的连续性。

同时也可以看出即便是Read操作,也是lock保护的。多个Goroutine对同一conn的并发读不会出现读出内容重叠的情况,但内容断点是依 runtime调度来随机确定的。存在一个业务包数据,1/3内容被goroutine-1读走,另外2/3被另外一个goroutine-2读 走的情况。比如一个完整包:world,当goroutine的read slice size < 5时,存在可能:一个goroutine读到 “worl”,另外一个goroutine读出”d”。

 (6)Socket属性

      原生Socket API提供了丰富的sockopt设置接口,但Golang有自己的网络架构模型,golang提供的socket options接口也是基于上述模型的必要的属性设置。包括

SetKeepAlive
SetKeepAlivePeriod
SetLinger
SetNoDelay (默认no delay)
SetWriteBuffer
SetReadBuffer

      不过上面的Method是TCPConn的,而不是Conn的,要使用上面的Method的,需要type assertion:

tcpConn, ok := c.(*TCPConn)
if !ok {
    //error handle
}

tcpConn.SetNoDelay(true)

      对于listener socket, golang默认采用了 SO_REUSEADDR,这样当你重启 listener程序时,不会因为address in use的错误而启动失败。而listen backlog的默认值是通过获取系统的设置值得到的。不同系统不同:mac 128, linux 512等。

 (7)关闭连接

      和前面的方法相比,关闭连接算是最简单的操作了。由于socket是全双工的,client和server端在己方已关闭的socket和对方关闭的socket上操作的结果有不同。看下面例子:

      客户端:

 1 package main
 2 
 3 import (
 4     "log"
 5     "net"
 6     "time"
 7 )
 8 
 9 func main() {
10     log.Println("begin dial...")
11     conn, err := net.Dial("tcp", ":8888")
12     if err != nil {
13         log.Println("dial error:", err)
14         return
15     }
16     conn.Close()
17     log.Println("close ok")
18 
19     var buf = make([]byte, 32)
20     n, err := conn.Read(buf)
21     if err != nil {
22         log.Println("read error:", err)
23     } else {
24         log.Printf("read % bytes, content is %s\n", n, string(buf[:n]))
25     }
26 
27     n, err = conn.Write(buf)
28     if err != nil {
29         log.Println("write error:", err)
30     } else {
31         log.Printf("write % bytes, content is %s\n", n, string(buf[:n]))
32     }
33 
34     time.Sleep(time.Second * 1000)
35 }
client.go

      服务端:

 1 //server.go
 2 
 3 package main
 4 
 5 import (
 6     "log"
 7     "net"
 8 )
 9 
10 func handleConn(c net.Conn) {
11     defer c.Close()
12 
13     // read from the connection
14     var buf = make([]byte, 10)
15     log.Println("start to read from conn")
16     n, err := c.Read(buf)
17     if err != nil {
18         log.Println("conn read error:", err)
19     } else {
20         log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
21     }
22 
23     n, err = c.Write(buf)
24     if err != nil {
25         log.Println("conn write error:", err)
26     } else {
27         log.Printf("write %d bytes, content is %s\n", n, string(buf[:n]))
28     }
29 }
30 
31 func main() {
32     l, err := net.Listen("tcp", ":8888")
33     if err != nil {
34         log.Println("listen error:", err)
35         return
36     }
37 
38     for {
39         c, err := l.Accept()
40         if err != nil {
41             log.Println("accept error:", err)
42             break
43         }
44         // start a new goroutine to handle
45         // the new connection.
46         log.Println("accept a new connection")
47         go handleConn(c)
48     }
49 }
server.go

      上述例子的执行结果如下:

[root@centos conn_close]# go run client1.go
2019/03/05 00:00:59 begin dial...
2019/03/05 00:00:59 close ok
2019/03/05 00:00:59 read error: read tcp 127.0.0.1:37296->127.0.0.1:8888: use of closed network connection
2019/03/05 00:00:59 write error: write tcp 127.0.0.1:37296->127.0.0.1:8888: use of closed network connection

[root@centos conn_close]# go run server1.go
2019/03/05 00:00:59 accept a new connection
2019/03/05 00:00:59 start to read from conn
2019/03/05 00:00:59 conn read error: EOF
2019/03/05 00:00:59 write 10 bytes, content is

      从client的结果来看,在己方已经关闭的socket上再进行read和write操作,会得到”use of closed network connection” error;
      从server的执行结果来看,在对方关闭的socket上执行read操作会得到EOF error,但write操作会成功,因为数据会成功写入己方的内核socket缓冲区中,即便最终发不到对方socket缓冲区了,因为己方socket并未关闭。因此当发现对方socket关闭后,己方应该正确合理处理自己的socket,再继续write已经无任何意义了。

(8)发送http请求

Get请求协议的格式如下:
请求首行;  // 请求方式 请求路径 协议和版本,例如:GET /index.html HTTP/1.1
请求头信息;// 请求头名称:请求头内容,即为key:value格式,例如:Host:localhost
空行;     // 用来与请求体分隔开
请求体。   // GET没有请求体,只有POST有请求体。

例如:
GET /books/?sex=man&name=Professional HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1
Connection: Keep-Alive

   关于Http协议可以看下博客:http://www.cnblogs.com/yuanchenqi/articles/6000358.html

   Get和Post请求的区别可以看下博客:https://www.cnblogs.com/logsharing/p/8448446.html

   依照上面Get的请求协议格式,我们给百度发一个Get请求:

 1 package main
 2 
 3 import (
 4     "fmt"
 5     "io"
 6     "net"
 7 )
 8 func main() {
 9 
10     conn, err := net.Dial("tcp", "www.baidu.com:80")
11     if err != nil {
12         fmt.Println("Error dialing", err.Error())
13         return
14     }
15     defer conn.Close()
16     
17     msg := "GET / HTTP/1.1\r\n"
18     msg += "Host: www.baidu.com\r\n"
19     msg += "Connection: close\r\n"
20     msg += "\r\n\r\n"
21 
22     _, err = io.WriteString(conn, msg)
23     if err != nil {
24         fmt.Println("write string failed, ", err)
25         return
26     }
27     buf := make([]byte, 4096)
28     for {
29         count, err := conn.Read(buf)
30         if err != nil {
31             break
32         }
33         fmt.Println(string(buf[0:count]))
34     }
35 }
Get 访问百度

(9)小结

      本文比较基础,但却很重要,毕竟golang是面向大规模服务后端的,对通信环节的细节的深入理解会大有裨益。另外Go的goroutine+阻塞通信的网络通信模型降低了开发者心智负担,简化了通信的复杂性,这点尤为重要。

 注:上面例子出现(root@centos)表示是在Centos6.5上运行,其他是在Windows上运行,go version go1.8 windows/amd64。

特别注意:

  • 上面内容除一小部分(运行结果及其他博客链接部分)全部来自 https://tonybai.com/2015/11/17/tcp-programming-in-golang/ 该博主,解释权归该博主。
  • 本节用到的例子在该博主github地址:https://github.com/bigwhite/experiments/tree/master/go-tcpsock

2. Redis使用

  (1)Redis简介

  • redis是个开源的高性能的key-value的内存数据库,可以把它当成远程的数据结构。
  • 支持的value类型非常多,比如string、list(链表)、set(集合)、hash表等等。
  • redis性能非常高,单机能够达到15w qps,通常适合做缓存。

  (2)下载并安装依赖

使用第三方开源的redis库: github.com/garyburd/redigo/redis
go get github.com/garyburd/redigo/redis

   注意:go get 从指定源上面下载或者更新指定的代码和依赖,并对他们进行编译和安装(相当于 clone + install)。

               更多命令使用可以看:https://www.flysnow.org/2017/03/08/go-in-action-go-tools.html

  (3)操作Redis

  • 连接redis
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "github.com/garyburd/redigo/redis"
 6 )
 7 
 8 func main() {
 9     fmt.Println("start to connect redis...")
10     c, err := redis.Dial("tcp", "192.168.30.134:6379")
11     if err != nil {
12         fmt.Println("conn redis failed,", err)
13         return
14     }
15 
16     defer c.Close()
17 }
connect redis
  • 字符串 Set 操作
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "github.com/garyburd/redigo/redis"
 6 )
 7 
 8 func main() {
 9     c, err := redis.Dial("tcp", "192.168.30.134:6379")
10     if err != nil {
11         fmt.Println("conn redis failed,", err)
12         return
13     }
14 
15     defer c.Close()
16     _, err = c.Do("Set", "abc", 100)
17     if err != nil {
18         fmt.Println(err)
19         return
20     }
21 
22     r, err := redis.Int(c.Do("Get", "abc"))
23     if err != nil {
24         fmt.Println("get abc failed,", err)
25         return
26     }
27 
28     fmt.Println(r)
29 }
String Set
  • Hash表
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "github.com/garyburd/redigo/redis"
 6 )
 7 
 8 func main() {
 9     c, err := redis.Dial("tcp", "192.168.30.134:6379")
10     if err != nil {
11         fmt.Println("conn redis failed,", err)
12         return
13     }
14 
15     defer c.Close()
16     _, err = c.Do("HSet", "books", "abc", 200)
17     if err != nil {
18         fmt.Println(err)
19         return
20     }
21 
22     r, err := redis.Int(c.Do("HGet", "books", "abc"))
23     if err != nil {
24         fmt.Println("get abc failed,", err)
25         return
26     }
27 
28     fmt.Println(r)
29 }
Hash
  • 批量Set
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "github.com/garyburd/redigo/redis"
 6 )
 7 
 8 func main() {
 9     c, err := redis.Dial("tcp", "192.168.30.134:6379")
10     if err != nil {
11         fmt.Println("conn redis failed,", err)
12         return
13     }
14 
15     defer c.Close()
16     _, err = c.Do("MSet", "abc", 100, "efg", 300)
17     if err != nil {
18         fmt.Println(err)
19         return
20     }
21 
22     r, err := redis.Ints(c.Do("MGet", "abc", "efg"))
23     if err != nil {
24         fmt.Println("get abc failed,", err)
25         return
26     }
27 
28     for _, v := range r {
29         fmt.Println(v)
30     }
31 }
batch set
  • 过期时间
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "time"
 6     "github.com/garyburd/redigo/redis"
 7 )
 8 
 9 func main() {
10     c, err := redis.Dial("tcp", "192.168.30.134:6379")
11     if err != nil {
12         fmt.Println("conn redis failed,", err)
13         return
14     }
15     defer c.Close()
16     
17     _, err = c.Do("Set", "abc", 100)
18     if err != nil {
19         fmt.Println(err)
20         return
21     }
22 
23     r, err := redis.Int(c.Do("Get", "abc"))
24     if err != nil {
25         fmt.Println("get abc failed,", err)
26         return
27     }
28     fmt.Println("abc = ", r)
29 
30     _, err = c.Do("expire", "abc", 5)  //5s后过期
31     if err != nil {
32         fmt.Println(err)
33         return
34     }
35 
36     time.Sleep(5*time.Second)
37 
38     r, err = redis.Int(c.Do("Get", "abc"))
39     if err != nil {
40         fmt.Println("get abc failed,", err)
41         return
42     }
43     fmt.Println("abc = ", r) //get abc failed, redigo: nil returned
44 }
expire
  • 队列操作
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "github.com/garyburd/redigo/redis"
 6 )
 7 
 8 func main() {
 9     c, err := redis.Dial("tcp", "192.168.30.134:6379")
10     if err != nil {
11         fmt.Println("conn redis failed,", err)
12         return
13     }
14 
15     defer c.Close()
16     _, err = c.Do("lpush", "book_list", "abc", "ceg", 300)
17     if err != nil {
18         fmt.Println(err)
19         return
20     }
21 
22     r, err := redis.String(c.Do("lpop", "book_list"))
23     if err != nil {
24         fmt.Println("get abc failed,", err)
25         return
26     }
27 
28     fmt.Println(r)
29 }
push

   上面只列出了redis几个基本操作,Redis更加详细操作可以看我的这篇博客(用Python API): https://www.cnblogs.com/xuejiale/p/10460468.html

  • Redis连接池

   先看实现连接池的例子:

   在cinfig.go中主要是连接池一些参数的设置,在pool.go中实现获取连接池接口,在main.go中是调连接池的接口应用。

1 package redisConf
2 
3 var RedisConf = map[string]string{
4    "name":    "redis",
5    "type":    "tcp",
6    "address": "192.168.30.134:6379",
7    "auth":    "*****",  //如果有密码,写成自己的密码
8 }
conf.go
 1 package redisPool
 2 
 3 import (
 4    "go_dev/day9/go_redis/redis_poll/redisConf"    //改成你自己的包目录
 5    "github.com/garyburd/redigo/redis"
 6    "time"
 7 )
 8 
 9 var RedisClient *redis.Pool
10 
11 func init() {
12    // 建立连接池
13     RedisClient = &redis.Pool {
14         MaxIdle: 16,
15         MaxActive:   1024, 
16         IdleTimeout: 300 * time.Second,
17         Dial: func() (redis.Conn, error) {
18             c, err := redis.Dial(redisConf.RedisConf["type"], redisConf.RedisConf["address"])
19             if err != nil {
20                 return nil, err
21             }
22             //如果redis设置了密码,需要下面的验证
23             // if _, err := c.Do("AUTH", redisConf.RedisConf["auth"]); err != nil {
24             //    c.Close()
25             //    return nil, err
26             // }
27             return c, nil
28         },
29         //每次获取连接前做一次check
30         TestOnBorrow: func(c redis.Conn, t time.Time) error {
31             if time.Since(t) < time.Minute {
32                 return nil
33             }
34             _, err := c.Do("PING")
35             return err
36         },
37     }
38 }
pool.go
 1 package main
 2 
 3 import (
 4    "go_dev/day9/go_redis/redis_poll/redisPool"  //改成你自己的包目录
 5    "fmt"
 6    "github.com/garyburd/redigo/redis"
 7 )
 8 
 9 var RedisExpire = 3600 //缓存有效期
10 
11 func main() {
12 
13    // 从池里获取连接
14    rc := redisPool.RedisClient.Get()
15    // 用完后将连接放回连接池
16    defer rc.Close()
17 
18    key := "redis.cache"
19    //设置值
20    _, err := rc.Do("Set", key, "1", "EX", RedisExpire)
21    if err != nil {
22       fmt.Println(err)
23       return
24    }
25    //取出值
26    val, err := redis.String(rc.Do("Get", key))
27    if err != nil {
28       fmt.Println(err)
29    }
30    fmt.Println(val)
31    //删除
32    _, err = rc.Do("Del", key)
33    if err != nil {
34       fmt.Println(err)
35       return
36    }
37 }
main.go
 1 func initRedis() {
 2    // 建立连接池
 3     pool := &redis.Pool {
 4         MaxIdle: 16,
 5         MaxActive:   1024, 
 6         IdleTimeout: 300 * time.Second,
 7         Dial: func() (redis.Conn, error) {
 8             return redis.Dial("tcp", "localhost:6379")
 9         },
10     }
11 }
简写版 连接池

   目录结构如下:

 

   分析:首先来看Pool这个结构体及结构体中各个变量的含义:

 1 type Pool struct {
 2     // Dial is an application supplied function for creating and configuring a
 3     // connection.
 4     //
 5     // The connection returned from Dial must not be in a special state
 6     // (subscribed to pubsub channel, transaction started, ...).
 7     Dial func() (Conn, error)
 8 
 9     // TestOnBorrow is an optional application supplied function for checking
10     // the health of an idle connection before the connection is used again by
11     // the application. Argument t is the time that the connection was returned
12     // to the pool. If the function returns an error, then the connection is
13     // closed.
14     TestOnBorrow func(c Conn, t time.Time) error
15 
16     // Maximum number of idle connections in the pool.
17     MaxIdle int
18 
19     // Maximum number of connections allocated by the pool at a given time.
20     // When zero, there is no limit on the number of connections in the pool.
21     MaxActive int
22 
23     // Close connections after remaining idle for this duration. If the value
24     // is zero, then idle connections are not closed. Applications should set
25     // the timeout to a value less than the server's timeout.
26     IdleTimeout time.Duration
27 
28     // If Wait is true and the pool is at the MaxActive limit, then Get() waits
29     // for a connection to be returned to the pool before returning.
30     Wait bool
31 
32     // Close connections older than this duration. If the value is zero, then
33     // the pool does not close connections based on age.
34     MaxConnLifetime time.Duration
35 
36     chInitialized uint32 // set to 1 when field ch is initialized
37 
38     mu     sync.Mutex    // mu protects the following fields
39     closed bool          // set to true when the pool is closed.
40     active int           // the number of open connections in the pool
41     ch     chan struct{} // limits open connections when p.Wait is true
42     idle   idleList      // idle connections
43 }
Pool struct

   主要看这几个参数:

Dial:是必须要实现的,就是调用普通的的redis.Dial即可。
MaxIdle:最大的空闲连接数,表示即使没有redis连接时依然可以保持N个空闲的连接,而不被清除,随时处于待命状态。
MaxActive:最大的激活连接数,表示同时最多有N个连接,也就是并发数。
IdleTimeout:最大的空闲连接等待时间,超过此时间后,空闲连接将被关闭。
Wait:当连接数已满,是否要阻塞等待获取连接。false表示不等待,直接返回错误。
TestOnBorrow:在获取conn的时候会调用一次这个方法,来保证连接可用(其实也不是一定可用,因为test成功以后依然有可能被干掉),这个方法是可选项,一般这个方法是去调用
一个redis的ping方法,看项目需求了,如果并发很高,想极限提高速度,这个可以不设置。如果想增加点连接可用性,还是加上比较好。

   Pool中的方法及具体实现可以看下面的链接:

https://github.com/garyburd/redigo/blob/master/redis/pool.go#L122
https://studygolang.com/articles/9642 (连接池代码分析)
https://blog.csdn.net/xiaohu50/article/details/51606349 (redis.Pool 配置参数调优)重点)GO操作redis更多API可以看: https://godoc.org/github.com/garyburd/redigo/redis#Ints,结合上面的操作就可以熟练操作Redis
  • 管道操作

   请求/响应服务可以实现持续处理新请求,即使客户端没有准备好读取旧响应。这样客户端可以发送多个命令到服务器而无需等待响应,最后在一次读取多个响应。这就是管道化(pipelining),这个技术在多年就被广泛使用了。距离,很多POP3协议实现已经支持此特性,显著加速了从服务器下载新邮件的过程。Redis很早就支持管道化,所以无论你使用任何版本,你都可以使用管道化技术
   连接支持使用Send(),Flush(),Receive()方法支持管道化操作。

Send(commandName string, args ...interface{}) error
Flush() error
Receive() (reply interface{}, err error)

   Send向连接的输出缓冲中写入命令。
   Flush将连接的输出缓冲清空并写入服务器端。
   Recevie按照FIFO顺序依次读取服务器的响应。

c.Send("SET", "foo", "bar")
c.Send("GET", "foo")
c.Flush()
c.Receive() // reply from SET
v, err = c.Receive() // reply from GET

      上面如果再一次 c.Receive() 则会 hang 住,因为只发送了两条命令,执行结果也就只有两条,再去取管道中无输出,因此会hang住。

 1 package main
 2 
 3 import (
 4     "fmt"
 5     "github.com/garyburd/redigo/redis"
 6 )
 7 
 8 func main() {
 9     c, err := redis.Dial("tcp", "192.168.30.134:6379")
10     if err != nil {
11         fmt.Println("conn redis failed, err:", err)
12         return
13     }
14     defer c.Close()
15 
16     c.Send("SET", "foo", "bar")
17     c.Send("GET", "foo")
18 
19     c.Flush()
20 
21     v, err := c.Receive()
22     fmt.Printf("v:%v,err:%v\n", v, err)  // v:OK,err:<nil>
23     v, err = c.Receive()
24     fmt.Printf("v:%s,err:%v\n", v, err)  // v:bar,err:<nil>
25     //fmt.Printf("v:%v,err:%v\n", v, err)  //v:[98 97 114],err:<nil> 
26 
27     v, err = c.Receive()    // hang住,一直等待
28     fmt.Printf("v:%v,err:%v\n", v, err)
29 }
hang example

       Do方法结合了Send, Flush and Receive方法的功能。开始Do方法往管道写入命令并且刷新输出缓冲。接下来Do方法会接收所有就绪的回复包括最近发送的命令。如果收到的回复中有错误,则Do就会返回错误。如果没有错误,Do会返回最近一次收到的回复。如果发送的命令是空(""),则Do方法会刷新输出缓冲收到就绪的回复而不用发送命令。

       使用发送和Do方法可以实现一个管道事务:

c.Send("MULTI")
c.Send("INCR", "foo")
c.Send("INCR", "bar")
r, err := c.Do("EXEC")
fmt.Println(r) // prints [1, 1]

       一个连接支持并发的Receive和并发的Send,Flush,但不支持并发的Do方法。

  • 发布订阅

      使用Send, Flush 和 Receive可以实现发布订阅的订阅者:

c.Send("SUBSCRIBE", "example")
c.Flush()
for {
    reply, err := c.Receive()
    if err != nil {
        return err
    }
    // process pushed message
}

     这 PubSubConn 类型封装了连接(Conn)很方便的实现订阅者。订阅,发布订阅,不订阅,发布不订阅方法发送并且刷新订阅管理命令。Receive方法将推送的消息转换为特定的类型。

 1 psc := redis.PubSubConn{Conn: c}
 2 psc.Subscribe("example")
 3 for {
 4     switch v := psc.Receive().(type) {
 5     case redis.Message:  //单个订阅subscribe
 6         fmt.Printf("%s: message: %s\n", v.Channel, v.Data)
 7     case redis.Subscription:  //模式订阅psubscribe
 8         fmt.Printf("%s: %s %d\n", v.Channel, v.Kind, v.Count)
 9     case error:
10         return v
11     }
12 }
发布订阅

图书管理系统v3:

     使用redis存储数据完善之前的图书管理系统?

 参考文献:

  • https://tonybai.com/2015/11/17/tcp-programming-in-golang/
  • https://godoc.org/github.com/garyburd/redigo/redis#Ints
  • https://blog.csdn.net/guyan0319/article/details/84944059 (Go Redis连接池)
  • https://www.jianshu.com/p/2d3db51d5bbe
  • https://studygolang.com/articles/12230 (golang redis连接池的使用)
  • https://www.cnblogs.com/suoning/p/7259106.html
posted @ 2019-03-05 00:18  pointerC++  阅读(3034)  评论(0编辑  收藏  举报