随笔 - 305  文章 - 0  评论 - 35  阅读 - 18万

达摩院提出时序预测新模型FEDformer

顶会点赞!达摩院提出时序预测新模型

阿里云 2022-07-12 16:05

https://mp.weixin.qq.com/s/9doHueBCbsV7eUH2q3uv0A

代码:https://github.com/DAMO-DI-ML/ICML2022-FEDformer
论文:https://arxiv.org/abs/2201.12740

框架:

任务和数据集:

数据集下载地址:https://cloud.tsinghua.edu.cn/d/e1ccfff39ad541908bae/

结论:

环境:Python 3.6, PyTorch 1.9.0

依赖:

pandas
numpy
torch
sklearn
einops
sympy
matplotlib

log.run_S:

>>>>>>>start training : ETTh1_FEDformer_random_modes64_ETTh1_ftS_sl96_ll48_pl96_dm512_nh8_el2_dl1_df2048_fc3_ebtimeF_dtTrue_Exp_2>>>>>>>>>>>>>>>>>>>>>>>>>>
train 8449
val 2785
test 2785
Epoch: 1 cost time: 69.89365196228027
Epoch: 1, Steps: 264 | Train Loss: 0.2078484 Vali Loss: 0.1244287 Test Loss: 0.0884568
Validation loss decreased (inf --> 0.124429).  Saving model ...
Updating learning rate to 0.0001
Epoch: 2 cost time: 70.45653772354126
Epoch: 2, Steps: 264 | Train Loss: 0.1732078 Vali Loss: 0.1181202 Test Loss: 0.0896501
Validation loss decreased (0.124429 --> 0.118120).  Saving model ...
Updating learning rate to 5e-05

log.run_M:

>>>>>>>start training : ETTm1_FEDformer_random_modes64_ETTm1_ftM_sl96_ll48_pl96_dm512_nh8_el2_dl1_df2048_fc3_ebtimeF_dtTrue_Exp_0>>>>>>>>>>>>>>>>>>>>>>>>>>
train 34369
val 11425
test 11425
Epoch: 1 cost time: 4989.59953212738
Epoch: 1, Steps: 1074 | Train Loss: 0.3408678 Vali Loss: 0.4292768 Test Loss: 0.3639539
Validation loss decreased (inf --> 0.429277).  Saving model ...
Updating learning rate to 0.0001
posted on   宋岳庭  阅读(887)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示