达摩院提出时序预测新模型FEDformer
顶会点赞!达摩院提出时序预测新模型
阿里云 2022-07-12 16:05
https://mp.weixin.qq.com/s/9doHueBCbsV7eUH2q3uv0A
代码:https://github.com/DAMO-DI-ML/ICML2022-FEDformer
论文:https://arxiv.org/abs/2201.12740
框架:
任务和数据集:
数据集下载地址:https://cloud.tsinghua.edu.cn/d/e1ccfff39ad541908bae/
结论:
环境:Python 3.6, PyTorch 1.9.0
依赖:
pandas
numpy
torch
sklearn
einops
sympy
matplotlib
log.run_S:
>>>>>>>start training : ETTh1_FEDformer_random_modes64_ETTh1_ftS_sl96_ll48_pl96_dm512_nh8_el2_dl1_df2048_fc3_ebtimeF_dtTrue_Exp_2>>>>>>>>>>>>>>>>>>>>>>>>>>
train 8449
val 2785
test 2785
Epoch: 1 cost time: 69.89365196228027
Epoch: 1, Steps: 264 | Train Loss: 0.2078484 Vali Loss: 0.1244287 Test Loss: 0.0884568
Validation loss decreased (inf --> 0.124429). Saving model ...
Updating learning rate to 0.0001
Epoch: 2 cost time: 70.45653772354126
Epoch: 2, Steps: 264 | Train Loss: 0.1732078 Vali Loss: 0.1181202 Test Loss: 0.0896501
Validation loss decreased (0.124429 --> 0.118120). Saving model ...
Updating learning rate to 5e-05
log.run_M:
>>>>>>>start training : ETTm1_FEDformer_random_modes64_ETTm1_ftM_sl96_ll48_pl96_dm512_nh8_el2_dl1_df2048_fc3_ebtimeF_dtTrue_Exp_0>>>>>>>>>>>>>>>>>>>>>>>>>>
train 34369
val 11425
test 11425
Epoch: 1 cost time: 4989.59953212738
Epoch: 1, Steps: 1074 | Train Loss: 0.3408678 Vali Loss: 0.4292768 Test Loss: 0.3639539
Validation loss decreased (inf --> 0.429277). Saving model ...
Updating learning rate to 0.0001
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理