数据分析之贝叶斯算法案例
1.贝叶斯定理
是一个经典的条件概率定理,其在机器学习中主要用来通过结果推算出原因产生的概率。P(A/B)*P(B)=P(B/A)*P(A)
2.字符串分类案例
#案例:随机输入一个字符串,判定其最可能属于哪个类别? #若计算P(cat/str)=P(cat)*P(str/cat)/P(str) #由于P(str)概率相同,因此公式可以简化为:P(cat/str)=P(cat)*P(str/cat) cat1=["a","b","c","d","e","j"] cat2=["a","d","o","h","e"] cat3=["a","b","l","e","h","f"] a="abcd" def predict(str1): cat=[cat1,cat2,cat3] p={0:0,1:0,2:0} p1=[len(cat1)/26,len(cat2)/26,len(cat3)/26]#26个字母中出现的概率 for i in str1: for j in range(len(cat)): if i in cat[j]: p[j]+=1/len(cat[j])*p1[j] #在cat1中字符串产生的概率, return sorted(p.items(),key= lambda p:p[1],reverse=True ) if __name__ == '__main__': print(predict(a)[0])
3.判断单词属于好评的简单案例
from collections import Counter import numpy as np class Bayers(): def __init__(self): self.good = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ] self.bad = [['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid'] ] self.good_counter=Counter([word for words in self.good for word in words]) self.bad_counter = Counter([word for words in self.bad for word in words]) self.good_chance=len(self.good)/len(self.good+self.bad) self.bad_chance = 1-self.good_chance def predict(self, data): """ 统计单词在好或坏中出现的概率,为避免单词出现概率为0,我们分子加1,分母加上查询单词的长度,进行修正 :param data: :return: """ p_good,p_bad=0,0 for word in data: p_good+= (self.good_counter.get(word,0)+1)/(len(data)+sum(self.good_counter.values()))*self.good_chance p_bad += (self.bad_counter.get(word, 0) + 1) / ( len(data) + sum(self.bad_counter.values())) * self.bad_chance if p_good>p_bad: return True return False if __name__ == '__main__': bayer=Bayers() print(bayer.predict(['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid']))