使用ELK Stack收集kubernetes集群内的应用日志

概念

  • 日志,对于任何系统来说都是及其重要的组成部分。在计算机系统里面,更是如此。但是由于现在的计算机系统大多比较复杂,很多系统都不是在一个地方,甚至都是跨国界的;即使是在一个地方的系统,也有不同的来源,比如,操作系统,应用服务,业务逻辑等等。他们都在不同生产各种各样的日志数据。根据不完全统计,我们全球每天大约要生产2EB的数据
  • K8S系统里的业务应用是高度“动态化”的,随着容器编排的进行,业务容器在不断的被创建、被摧毁、被迁移(漂)、被扩容...
  • 面对如此海量的数据,又是分布在各个不同地方,如果我们需要去查找一些重要的信息,难道还是使用传统的方法,去登录到一台台机器上查看?看来传统的工具和方法已经显得非常笨拙和低效了。于是,一些聪明人就提出了建立一套中式的方法,把不同来源的数据集中整合到一个地方。

 

  要达到上述的概念,则我们需要这样一套日志收集、分析的系统:

  • 收集  --  能够采集多种来源的日志数据  (流式日志收集器:就是打一行日志收集一行)
  • 传输  --  能够稳定的把日志数据传输到中央系统  (消息队列,传输一种是基于tcp socket 的9300端口和es通讯,另一种是基于https的9200端口进行通信)
  • 存储  --  可以将日志以结构化数据(就是类似二维表的数据)的形式存储起来 (搜索引擎)
  • 分析  --  支持方便的分析、检索方法,最好有GUI管理系统 (前端)
  • 警告  --  能够提供错误报告,监控机制 (监控工具)

 

 

  优秀的社区开源解决方案  -- ELK Stack

  • E  --  ElasticSearch
  • L   --   LogStash
  • K   --  Kibaba

 

 

  •  缺点:
    • Logstash使用Jruby语言开发,吃资源,大量部署消耗极高
    • 业务程序与logstash耦合过松,不利于业务迁移
    • 日志收集与ES解耦又过紧,易打爆、丢数据
    • 在容器云环境下,传统ELK模型难以完成工作

 

下面的架构模型为本章要部署的架构

终极版模型:

 

 

 

用filebeat来代替logstash来到一线收集pod的日志,把pod和filebeat用边车模式绑在一起运行,这样业务与日志收集的耦合度就紧了

Kafka,用kafka做解耦,将日志打到logstash,kafka支持订阅与发布,这里是filebeat以topic的形式发布到kafka,然后logstash去kafka里取topic,在往ES(ElasticSearch)打日志,这实际上是一个异步的过程

 

改造dubbo-demo-web项目为Tomcat启动项目

Tomcat官网

准备Tomcat的镜像底包

准备tomcat二进制包

运维主机HDSS7-200.host.com上:
Tomcat8下载链接

 1 [root@hdss7-200 src]# pwd
 2 /opt/src
 3 
 4 [root@hdss7-200 src]# ll |grep tomcat
 5 -rw-r--r-- 1 root root 5730658 8月   5 16:47 apache-tomcat-8.5.57-src.tar.gz
 6 
 7 [root@hdss7-200 src]# mkdir -p /data/dockerfile/tomcat8 && tar xf apache-tomcat-8.5.57-src.tar.gz -C /data/dockerfile/tomcat8
 8 
 9 [root@hdss7-200 src]# cd /data/dockerfile/tomcat8/ 
 10  rm -fr apache-tomcat-8.5.57-src/webapps/*

简单配置tomcat

  1. 关闭AJP端口
1 [root@hdss7-200 tomcat8]# vim /data/dockerfile/tomcat8/apache-tomcat-8.5.57-src/conf/server.xml 
2 
3 # 用 <! --      中间内容        --> 结尾注释内容
4 # 此版本tomcat已经默认注册

 

 

 

 

  1. 配置日志
  • 删除3manager,4host-manager的handlers
1 [root@hdss7-200 tomcat8]# vim /data/dockerfile/tomcat8/apache-tomcat-8.5.57-src/conf/logging.properties 
2 
3 handlers = 1catalina.org.apache.juli.AsyncFileHandler, 2localhost.org.apache.juli.AsyncFileHandler,java.util.logging.ConsoleHandler

 

 日志级别改为INFO

1 [root@hdss7-200 tomcat8]# vim /data/dockerfile/tomcat8/apache-tomcat-8.5.57-src/conf/logging.properties 
2 
3 1catalina.org.apache.juli.AsyncFileHandler.level = INFO
4 2localhost.org.apache.juli.AsyncFileHandler.level = INFO
5 java.util.logging.ConsoleHandler.level = INFO

# 注释掉所有关于3manager,4host-manager日志的配置

 

 

准备Dockerfile

 1 [root@hdss7-200 ~]# vi /data/dockerfile/tomcat8/Dockerfile
 2 
 3 From harbor.xue.com/public/jre:8u112
 4 RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime &&\ 
 5     echo 'Asia/Shanghai' >/etc/timezone
 6 ENV CATALINA_HOME /opt/tomcat
 7 ENV LANG zh_CN.UTF-8
 8 ADD apache-tomcat-8.5.57-src/ /opt/tomcat
 9 ADD config.yml /opt/prom/config.yml
10 ADD jmx_javaagent-0.3.1.jar /opt/prom/jmx_javaagent-0.3.1.jar
11 WORKDIR /opt/tomcat
12 ADD entrypoint.sh /entrypoint.sh
13 CMD ["/entrypoint.sh"]
14 
15 [root@hdss7-200 ~]# vi /data/dockerfile/tomcat8/config.yml
16 
17 18 rules:
19   - pattern: '.*'
20 
21 
22 [root@hdss7-200 ~]# wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.3.1/jmx_prometheus_javaagent-0.3.1.jar -O jmx_javaagent-0.3.1.jar      
23 
24 
25 [root@hdss7-200 ~]# vi /data/dockerfile/tomcat8/entrypoint.sh  (不要忘了给执行权限)
26 
27 #!/bin/bash
28 M_OPTS="-Duser.timezone=Asia/Shanghai -javaagent:/opt/prom/jmx_javaagent-0.3.1.jar=$(hostname -i):${M_PORT:-"12346"}:/opt/prom/config.yml"
29 C_OPTS=${C_OPTS}  # 连接apollo需要的环境变量
30 MIN_HEAP=${MIN_HEAP:-"128m"}
31 MAX_HEAP=${MAX_HEAP:-"128m"}
32 JAVA_OPTS=${JAVA_OPTS:-"-Xmn384m -Xss256k -Duser.timezone=GMT+08  -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128m -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram  -Dfile.encoding=UTF8 -Dsun.jnu.encoding=UTF8"}
33 CATALINA_OPTS="${CATALINA_OPTS}"
34 JAVA_OPTS="${M_OPTS} ${C_OPTS} -Xms${MIN_HEAP} -Xmx${MAX_HEAP} ${JAVA_OPTS}"
35 sed -i -e "1a\JAVA_OPTS=\"$JAVA_OPTS\"" -e "1a\CATALINA_OPTS=\"$CATALINA_OPTS\"" /opt/tomcat/bin/catalina.sh
36 
37 cd /opt/tomcat && /opt/tomcat/bin/catalina.sh run
38 
39 
40 
41 [root@hdss7-200 ~]# chmod +x /data/dockerfile/tomcat8/entrypoint.sh
42   

 

制作镜像并推送

 1 [root@hdss7-200 tomcat8]# docker build . -t harbor.xue.com/base/tomcat:v8.5.57
 2 Sending build context to Docker daemon  32.79MB
 3 Step 1/10 : From harbor.xue.com/public/jre:8u112
 4  ---> fa3a085d6ef1
 5 Step 2/10 : RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime &&    echo 'Asia/Shanghai' >/etc/timezone
 6  ---> Using cache
 7  ---> f0725fded125
 8 Step 3/10 : ENV CATALINA_HOME /opt/tomcat
 9  ---> Running in 09fae2052230
10 Removing intermediate container 09fae2052230
11  ---> 7c6546db577b
12 Step 4/10 : ENV LANG zh_CN.UTF-8
13  ---> Running in 22fc0f1fbbb5
14 Removing intermediate container 22fc0f1fbbb5
15  ---> f5d7c030e29d
16 Step 5/10 : ADD apache-tomcat-8.5.57-src/ /opt/tomcat
17  ---> 19d6c2a589b4
18 Step 6/10 : ADD config.yml /opt/prom/config.yml
19  ---> 8091dab091ec
20 Step 7/10 : ADD jmx_javaagent-0.3.1.jar /opt/prom/jmx_javaagent-0.3.1.jar
21  ---> 4d92814d8fa7
22 Step 8/10 : WORKDIR /opt/tomcat
23  ---> Running in 54c2ca87013d
24 Removing intermediate container 54c2ca87013d
25  ---> 948ff870712f
26 Step 9/10 : ADD entrypoint.sh /entrypoint.sh
27  ---> 3e36f14c0412
28 Step 10/10 : CMD ["/entrypoint.sh"]
29  ---> Running in 3584687deec1
30 Removing intermediate container 3584687deec1
31  ---> 17e4dfb6af7c
32 Successfully built 17e4dfb6af7c
33 Successfully tagged harbor.xue.com/base/tomcat:v8.5.57
34 
35 [root@hdss7-200 tomcat8]# docker push !$
36 docker push harbor.xue.com/base/tomcat:v8.5.57
37 The push refers to repository [harbor.xue.com/base/tomcat]
38 136ec47e7025: Pushed 
39 48f30a377149: Pushed 
40 8fb550cdedab: Pushed 
41 aabcf63a9e94: Pushed 
42 34469739c7f1: Mounted from base/jre8 
43 0690f10a63a5: Mounted from base/jre8 
44 c843b2cf4e12: Mounted from base/jre8 
45 fddd8887b725: Mounted from base/jre8 
46 42052a19230c: Mounted from base/jre8 
47 8d4d1ab5ff74: Mounted from base/jre8 
48 v8.5.57: digest: sha256:1ef721bf2bcf227cff4c0edaeaaae1c36207113c1ada83f1391b426cb55c1fe8 size: 2409

改造dubbo-demo-web项目

   略

新建Jenkins的pipeline

基于tomcat跑的web项目,之前的那条popeline(流水线)是不适用的,因为上一条流水线是有10个参数,tomcat的参数要多一个(多的是ROOT dir)

 

 

 

 

 

Pipeline Script

 1 pipeline {
 2   agent any 
 3     stages {
 4     stage('pull') { //get project code from repo 
 5       steps {
 6         sh "git clone ${params.git_repo} ${params.app_name}/${env.BUILD_NUMBER} && cd ${params.app_name}/${env.BUILD_NUMBER} && git checkout ${params.git_ver}"
 7         }
 8     }
 9     stage('build') { //exec mvn cmd
10       steps {
11         sh "cd ${params.app_name}/${env.BUILD_NUMBER}  && /var/jenkins_home/maven-${params.maven}/bin/${params.mvn_cmd}"
12       }
13     }
14     stage('unzip') { //unzip  target/*.war -c target/project_dir
15       steps {
16         sh "cd ${params.app_name}/${env.BUILD_NUMBER} && cd ${params.target_dir} && mkdir project_dir && unzip *.war -d ./project_dir"
17       }
18     }
19     stage('image') { //build image and push to registry
20       steps {
21         writeFile file: "${params.app_name}/${env.BUILD_NUMBER}/Dockerfile", text: """FROM harbor.xue.com/${params.base_image}
22 ADD ${params.target_dir}/project_dir /opt/tomcat/webapps/${params.root_url}"""
23         sh "cd  ${params.app_name}/${env.BUILD_NUMBER} && docker build -t harbor.xue.com/${params.image_name}:${params.git_ver}_${params.add_tag} . && docker push harbor.xue.com/${params.image_name}:${params.git_ver}_${params.add_tag}"
24       }
25     }
26   }
27 }

 

构建应用镜像

使用Jenkins进行CI,并查看harbor仓库

 

 

准备k8s的资源配置清单

不再需要单独准备资源配置清单,在test名称空间启动 apollo和dubbo-demo和修改

k8s的dashboard上直接修改image的值为jenkins打包出来的镜像
文档里的例子是:harbor.xue.com/app/dubbo-demo-web-tomcat:master_200806_1640

 

使用ELK Stack收集kubernetes集群内的应用日志

部署ElasticSearch

官网
官方github地址
下载地址
HDSS7-12.host.com上:

这里用6.8一下,因为更新的版本需要jkd11+

安装

[root@hdss7-12 src]# ls -l|grep elasticsearch-5.6.15.tar.gz
-rw-r--r-- 1 root root  72262257 Jan 30 15:18 elasticsearch-5.6.15.tar.gz
[root@hdss7-12 src]# tar xf elasticsearch-5.6.15.tar.gz -C /opt
[root@hdss7-12 src]# ln -s /opt/elasticsearch-5.6.15/ /opt/elasticsearch

配置

elasticsearch.yml

[root@hdss7-12 src]# mkdir -p /data/elasticsearch/{data,logs}

[root@hdss7-12 elasticsearch]# vi config/elasticsearch.yml

cluster.name: es.xue.com
node.name: hdss7-12.host.com
path.data: /data/elasticsearch/data
path.logs: /data/elasticsearch/logs
bootstrap.memory_lock: true
network.host: 10.4.7.12
http.port: 9200

jvm.options

 

1 [root@hdss7-12 elasticsearch]# vi config/jvm.options
2 -Xms512m
3 -Xmx512m

创建普通用户

1 [root@hdss7-12 elasticsearch]# useradd -s /bin/bash -M es
2 [root@hdss7-12 elasticsearch]# chown -R es.es /opt/elasticsearch-5.6.15
3 [root@hdss7-12 elasticsearch]# chown -R es.es /data/elasticsearch

文件描述符

[root@hdss7-12 src]# vi /etc/security/limits.d/es.conf

es hard nofile 65536
es soft fsize unlimited
es hard memlock unlimited
es soft memlock unlimited

调整内核参数

1 [root@hdss7-12 elasticsearch]# sysctl -w vm.max_map_count=262144
2 or
3 
4 [root@hdss7-12 elasticsearch]# echo "vm.max_map_count=262144" > /etc/sysctl.conf
5 
6 [root@hdss7-12 elasticsearch]# sysctl -p

启动

 1 [root@hdss7-12 src]# su -c "/opt/elasticsearch/bin/elasticsearch -d" es
 2 
 3 
 4 [root@hdss7-12 src]# ps -ef|grep elastic|grep -v grep
 5 es         2684      1  7 14:54 ?        00:00:43 /usr/java/jdk/bin/java -Xms512m -Xmx512m -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75 -XX:+UseCMSInitiatingOccupancyOnly -XX:+AlwaysPreTouch -server -Xss1m -Djava.awt.headless=true -Dfile.encoding=UTF-8 -Djna.nosys=true -Djdk.io.permissionsUseCanonicalPath=true -Dio.netty.noUnsafe=true -Dio.netty.noKeySetOptimization=true -Dio.netty.recycler.maxCapacityPerThread=0 -Dlog4j.shutdownHookEnabled=false -Dlog4j2.disable.jmx=true -Dlog4j.skipJansi=true -XX:+HeapDumpOnOutOfMemoryError -Des.path.home=/opt/elasticsearch -cp /opt/elasticsearch/lib/* org.elasticsearch.bootstrap.Elasticsearch -d
 6 
 7 
 8 [root@hdss7-12 logs]# netstat -tulanp | grep 9200
 9 tcp6       0      0 10.4.7.12:9200          :::*                    LISTEN      2684/java           
10 
11 [root@hdss7-12 logs]# netstat -tulanp | grep 9300
12 tcp6       0      0 10.4.7.12:9300          :::*                    LISTEN      2684/java    

调整ES日志模板

[root@hdss7-12 elasticsearch]# curl -XPUT http://10.4.7.12:9200/_template/k8s -d '{
  "template" : "k8s*",
  "index_patterns": ["k8s*"],  
  "settings": {
    "number_of_shards": 5,
    "number_of_replicas": 0
  }
}'

# 就是调整副本数为0 分片为5,生产环境正建议副本数调成2,因为工业中3份数据定义为安全

部署kafka

官网
官方github地址
下载地址
HDSS7-11.host.com上:

安装

 

[root@hdss7-11 src]# pwd
/opt/src
[root@hdss7-11 src]# ll | grep kafka_2.12-2.2.0.tgz 
-rw-r--r-- 1 root root  57028557 8月  10 21:28 kafka_2.12-2.2.0.tgz

[root@hdss7-11 src]# tar xf kafka_2.12-2.2.0.tgz -C /opt/
[root@hdss7-11 src]# ln -s /opt/kafka_2.12-2.2.0/ ../kafka

配置

[root@hdss7-11 kafka]# vim config/server.properties 

log.dirs=/data/kafka/logs
zookeeper.connect=localhost:2181
log.flush.interval.messages=10000
log.flush.interval.ms=1000
delete.topic.enable=true
host.name=hdss7-11.host.com
advertised.listeners=PLAINTEXT://10.4.7.11:9092

启动

[root@hdss7-11 kafka]# bin/kafka-server-start.sh -daemon config/server.properties
[root@hdss7-11 kafka]# netstat -luntp|grep 9092
tcp6       0      0 10.4.7.12:9092         :::*                    LISTEN      17543/java

启动报错

[root@hdss7-11 kafka]# ./bin/kafka-server-start.sh config/server.properties 
[2020-08-12 10:02:49,304] FATAL  (kafka.Kafka$)
java.lang.VerifyError: Uninitialized object exists on backward branch 146
Exception Details:
  Location:
    scala/util/matching/Regex.unapplySeq(Ljava/lang/CharSequence;)Lscala/Option; @200: goto
  Reason:
    Error exists in the bytecode
  Bytecode:
    0000000: 2bc7 000a b200 524d a700 db2a b600 542b
    0000010: b600 5a4e 2a2d b600 5e99 00c6 bb00 6059
    0000020: b200 65b2 006a 0436 04c7 0005 01bf 1504
    0000030: 2db6 0070 b600 74b6 0078 2dba 008e 0000
    0000040: b200 93b6 0097 3a07 3a06 59c7 0005 01bf
    0000050: 3a05 1907 b200 93b6 009b a600 7619 05b2
    0000060: 00a0 a600 09b2 00a0 a700 71bb 00a2 5919
    0000070: 05b6 00a8 3a0c 2d19 0cb8 0085 b200 a0b7
    0000080: 00ac 3a08 1908 3a09 1905 b600 afc0 00a4
    0000090: 3a0a 190a b200 a0a5 0034 bb00 a259 190a
    00000a0: b600 a83a 0c2d 190c b800 85b2 00a0 b700
    00000b0: ac3a 0b19 0919 0bb6 00b3 190b 3a09 190a
    00000c0: b600 afc0 00a4 3a0a a7ff ca19 08a7 000c
    00000d0: 1905 1906 1907 b800 b9b7 00bc a700 06b2
    00000e0: 0052 4d2c b0                           
  Stackmap Table:
    same_frame(@11)
    full_frame(@46,{Object[#2],Object[#204],Top,Object[#108],Integer},{Uninitialized[#28],Uninitialized[#28],Object[#98]})
    full_frame(@80,{Object[#2],Object[#204],Top,Object[#108],Integer,Top,Object[#206],Object[#208]},{Uninitialized[#28],Uninitialized[#28],Object[#164]})
    full_frame(@107,{Object[#2],Object[#204],Top,Object[#108],Integer,Object[#164],Object[#206],Object[#208]},{Uninitialized[#28],Uninitialized[#28]})
    full_frame(@146,{Object[#2],Object[#204],Top,Object[#108],Integer,Object[#164],Object[#206],Object[#208],Object[#162],Object[#162],Object[#164],Top,Object[#4]},{Uninitialized[#28],Uninitialized[#28]})
    full_frame(@203,{Object[#2],Object[#204],Top,Object[#108],Integer,Object[#164],Object[#206],Object[#208],Object[#162],Object[#162],Object[#164],Top,Object[#4]},{Uninitialized[#28],Uninitialized[#28]})
    full_frame(@208,{Object[#2],Object[#204],Top,Object[#108],Integer,Object[#164],Object[#206],Object[#208]},{Uninitialized[#28],Uninitialized[#28]})
    full_frame(@217,{Object[#2],Object[#204],Top,Object[#108],Integer,Object[#164],Object[#206],Object[#208]},{Uninitialized[#28],Uninitialized[#28],Object[#4]})
    full_frame(@223,{Object[#2],Object[#204],Top,Object[#108]},{})
    same_locals_1_stack_item_frame(@226,Object[#210])
    full_frame(@227,{Object[#2],Object[#204],Object[#210]},{})

    at scala.collection.immutable.StringLike.r(StringLike.scala:281)
    at scala.collection.immutable.StringLike.r$(StringLike.scala:281)
    at scala.collection.immutable.StringOps.r(StringOps.scala:29)
    at scala.collection.immutable.StringLike.r(StringLike.scala:270)
    at scala.collection.immutable.StringLike.r$(StringLike.scala:270)
    at scala.collection.immutable.StringOps.r(StringOps.scala:29)
    at kafka.cluster.EndPoint$.<init>(EndPoint.scala:29)
    at kafka.cluster.EndPoint$.<clinit>(EndPoint.scala)
    at kafka.server.Defaults$.<init>(KafkaConfig.scala:63)
    at kafka.server.Defaults$.<clinit>(KafkaConfig.scala)
    at kafka.server.KafkaConfig$.<init>(KafkaConfig.scala:673)
    at kafka.server.KafkaConfig$.<clinit>(KafkaConfig.scala)
    at kafka.server.KafkaServerStartable$.fromProps(KafkaServerStartable.scala:28)
    at kafka.Kafka$.main(Kafka.scala:58)
    at kafka.Kafka.main(Kafka.scala)


# 如果遇到上面的这种错误,请排查
一:
kafka无法启动或卡死
<可能原因:虚拟机内存不足

解决方法:修改启动脚本的初始内存1G -> 200m

1、打开脚本 vim bin/kafka-server-start.sh

2、找到:export KAFKA_HEAP_OPTS="-Xmx1G -Xms1G"

3、修改为:export KAFKA_HEAP_OPTS="-Xmx200m -Xms200m"

4、重启kafka:bin/kafka-server-start.sh config/server.properties>


二:
kafka的对jdk的版本要求比较苛刻,
本人下载的版本是 kafka_2.12-2.2.0,要下载对应的jdk,精确到小版本JDK1.8.0_251  下载地址(https://www.cnblogs.com/congliang/p/13124474.html)

解压更换环境变量中的路径即可

参考播客
https://blog.csdn.net/QYHuiiQ/article/details/86556591

常用命令

测试kafka:

1.切换到 /usr/local/kafka,创建topics

./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test-topic

2.创建生产者

./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test_topics

 3.重新打开新终端创建消费者:

./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test_topics --from-beginning

 

后台启动:

方法一:

sh kafka-server-start.sh ../config/server.properties 1>/dev/null  2>&1  &

方法二:
nohup bin/kafka-server-start.sh config/server.properties >>kafka.log &

 

部署kafka-manager

官方github地址
源码下载地址
运维主机HDSS7-200.host.com上:

直接下载docker镜像

[root@hdss7-200 ~]# docker pull sheepkiller/kafka-manager
Using default tag: latest
latest: Pulling from sheepkiller/kafka-manager
469cfcc7a4b3: Pull complete 
4458b033eac3: Pull complete 
838a0ff6e24f: Pull complete 
0128a98dafdb: Pull complete 
Digest: sha256:615f3b99d38aba2d5fdb3fb750a5990ba9260c8fb3fd29c7e776e8c150518b78
Status: Downloaded newer image for sheepkiller/kafka-manager:latest
docker.io/sheepkiller/kafka-manager:latest


[root@hdss7-200 ~]# docker tag 4e4a8c5dabab harbor.xue.com/infra/kafka-manager:stable

[root@hdss7-200 ~]# docker push !$

准备资源配置清单

[root@hdss7-200 ~]# mkdir /data/k8s-yaml/kafka-manager/

[root@hdss7-200 ~]# cd !$
cd /data/k8s-yaml/kafka-manager/

# dp
vi [root@hdss7-200 kafka-manager]# vi dp.yaml

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
  name: kafka-manager
  namespace: infra
  labels: 
    name: kafka-manager
spec:
  replicas: 1
  selector:
    matchLabels: 
      name: kafka-manager
  template:
    metadata:
      labels: 
        app: kafka-manager
        name: kafka-manager
    spec:
      containers:
      - name: kafka-manager
        image: harbor.xue.com/infra/kafka-manager:stable
        ports:
        - containerPort: 9000
          protocol: TCP
        env:
        - name: ZK_HOSTS
          value: zk1.xue.com:2181
        - name: APPLICATION_SECRET
          value: letmein
        imagePullPolicy: IfNotPresent
      imagePullSecrets:
      - name: harbor
      restartPolicy: Always
      terminationGracePeriodSeconds: 30
      securityContext: 
        runAsUser: 0
      schedulerName: default-scheduler
  strategy:
    type: RollingUpdate
    rollingUpdate: 
      maxUnavailable: 1
      maxSurge: 1
  revisionHistoryLimit: 7
  progressDeadlineSeconds: 600


# svc.yaml
kind: Service
apiVersion: v1
metadata: 
  name: kafka-manager
  namespace: infra
spec:
  ports:
  - protocol: TCP
    port: 9000
    targetPort: 9000
  selector: 
    app: kafka-manager
  clusterIP: None
  type: ClusterIP
  sessionAffinity: None


# ingress.yaml

kind: Ingress
apiVersion: extensions/v1beta1
metadata: 
  name: kafka-manager
  namespace: infra
spec:
  rules:
  - host: km.xue.com
    http:
      paths:
      - path: /
        backend: 
          serviceName: kafka-manager
          servicePort: 9000

解析域名

HDSS7-11.host.com

km	60 IN A 10.4.7.10

应用资源配置清单

任意一台运算节点上:

[root@hdss7-21 ~]# kubectl apply -f http://k8s-yaml.xue.com/kafka-manager/dp.yaml
deployment.extensions/kafka-manager created

[root@hdss7-21 ~]# kubectl apply -f http://k8s-yaml.xue.com/kafka-manager/svc.yaml
service/kafka-manager created

[root@hdss7-21 ~]# kubectl apply -f http://k8s-yaml.xue.com/kafka-manager/ingress.yaml
ingress.extensions/kafka-manager created

浏览器访问

http://km.xue.com

 

 

 添加集群

 

 

posted @ 2020-08-05 14:53  xuefy  阅读(537)  评论(0编辑  收藏  举报