Python 中的元类编程
让我们先用 30 秒钟来回顾一下 OOP 到底是什么。在面向对象编程语言中,可以定义
类,它们的用途是将相关的数据和行为捆绑在一起。这些类可以继承其
父类的部分或全部性质,但也可以定义自己的属性(数据)或方法(行为)。在定义类的过程结束时,类通常充当用来创建
实例(有时也简单地称为
对象)的模板。同一个类的不同实例通常有不同的数据,但“外表”都是一样 — 例如,
Employee
对象
bob
和
jane
都有
.salary
和
.room_number
,但两者的房间和薪水都各不相同。
一些 OOP 语言(包括 Python)允许对象是
自省的(也称为
反射)。即,自省对象能够描述自己:实例属于哪个类?类有哪些祖先?对象可以用哪些方法和属性?自省让处理对象的函数或方法根据传递给函数或方法的对象类型来做决定。即使没有自省,函数也常常根据实例数据进行划分,例如,到
jane.room_number
的路线不同于到
bob.room_number
的路线,因为它俩在不同的房间。利用自省,
还可以在安全地计算
jane
所获奖金的同时,跳过对
bob
的计算,例如,因为
jane
有
.profit_share
属性,或者因为
bob
是子类
Hourly(Employee)
的实例。
以上概述的基本 OOP 系统功能相当强大。但在上述描述中有一个要素没有受到重视:在 Python(以及其它语言)中,类本身就是可以被传递和自省的对象。正如前面所讲到的,既然可以用类作为模板来生成对象,那么用什么 作为模板来生成类呢?答案当然是 元类(metaclass)。
Python 一直都有元类。但元类中所涉及的方法在 Python 2.2 中才得以更好地公开在人们面前。Python V2.2
明确地不再只使用一个特殊的(通常是隐藏的)元类来创建每个类对象。现在程序员可以创建原始元类
type
的子类,甚至可以用各种元类动态地生成类。当然,仅仅因为
可以在 Python 2.2
中操作元类,这并不能说明您可能想这样做的原因。
而且,不需要使用定制元类来操作类的生成。一种不太费脑筋的概念是 类工厂:一种普通的函数,它可以 返回在函数体内动态创建的类。用传统的 Python 语法,您可以编写:
Python 1.5.2 (#0, Jun 27 1999, 11:23:01) [...] |
工厂函数
class_with_method()
动态地创建一个类,并返回该类,这个类包含传递给该工厂
的方法/函数。在返回该类之前,在函数体内操作类自身。
new
模块提供了更简洁的编码方式,但其中的选项与
类工厂体内定制代码的选项不同,例如:
>>> from new import classobj |
在所有这些情形中,没有将类(
Foo
和
Foo2
)的行为直接编写为代码,
而是用动态参数在运行时调用函数来创建类的行为。这里要强调的一点是,不仅
实例可以动态地创建,而且
类本身也可以动态地创建。
元类的魔力是如此之大,以至于 99% 的用户曾有过的顾虑都是不必要的。如果您想知道是否需要它们,则可以不用它们(那些实际需要元类的人们确实清楚自己需要它们,不需要解释原因)。— Python 专家 Tim Peters
(类的)方法象普通函数一样可以返回对象。所以从这个意义上讲,类工厂可以是类,就象它们可以是函数一样容易,这是显然的。尤其
是 Python 2.2+ 提供了一个称为
type
的特殊类,它正是这样的类工厂。当然,读者会认识到
type()
不象 Python 老版本的内置函数那样“野心勃勃”— 幸运的是,老版本的
type()
函数的行为是由
type
类维护的(换句话说,
type(obj)
返回对象
obj
的类型/类)。作为类工厂的新
type
类,其工作方式与函数
new.classobj
一直所具有的方式相同:
>>> X = type('X',(),{'foo':lambda self:'foo'}) |
但是因为
type
现在是(元)类,所以可以自由用它来创建子类:
>>> class ChattyType(type): |
富有“魔力”的
.__new__()
和
.__init__()
方法很特殊,但在概念上,对于任何其它类,它们的工作方式都是一样的。
.__init__()
方法使您能配置所创建的对象;
.__new__()
方法使您能定制它的分配。当然,后者没有被广泛地使用,但对于每个
Python 2.2 new 样式的类(通常通过继承而不是覆盖),都存在该方法。
需要注意
type
后代的一个特性;它常使第一次使用元类的人们“上圈套”。按照惯例,这些方法的第一个参数名为
cls
,而不是
self
,因为这些方法是在
已生成的类上进行操作的,而不是在元类上。事实上,关于这点没什么特别的;所有方法附加在它们的实例上,而且元类的实例是类。非特殊的
名称使这更明显:
>>> class Printable(type): |
所有这些令人惊讶但又常见的做法以及便于掌握的语法使得元类的使用更容易,但也让新用户感到迷惑。对于其它语法有几个元素。但这些新变体的解析顺序需要点技巧。类可以从其祖先那继承元类 — 请注意,这与将元类
作为祖先
不一样(这是另一处常让人迷惑的地方)。对于老式类,定义一个全局
_metaclass_
变量可以强制使用定制元类。但大多数时间,最安全的方法是,在希望通过定制元类来创建类时,设置该类的
_metaclass_
类属性。必须在类定义本身中设置变量,因为
如果稍后(在已经创建类对象之后)设置属性
,则不会使用元类。例如:
>>> class Bar: |
至此,我们已经了解了一些有关元类的基本知识。但要使用元类,则比较复杂。使用元类的困难之处在于,通常在 OOP 设计中,类其实 做得不多。对于封装和打包数据和方法,类的继承结构很有用,但在具体 情形中,人们通常使用实例。
我们认为元类在两大类编程任务中确实有用。
第一类(可能是更常见的一类)是在设计时不能 确切地知道类需要做什么。显然,您对它有所了解,但某个特殊的细节 可能取决于稍后才能得到的信息。“稍后”本身有两类:(a)当应用程序使用库模块时;(b)在运行时,当某种情形存在时。这类很接近于通常所说的“面向方 面的编程(Aspect-Oriented Programming,AOP)”。我们将展示一个我们认为非常别致的示例:
% cat dump.py |
正如您所期望的,该应用程序打印出
data
对象相当常规的描述(常规的实例对象)。但如果将
运行时参数传递给应用程序,则可以得到相当不同的结果:
% dump.py gnosis.magic MetaXMLPickler |
这个特殊的示例使用
gnosis.xml.pickle
的序列化样式,但最新的
gnosis.magic
包还包含元类序列化器
MetaYamlDump
、
MetaPyPickler
和
MetaPrettyPrint
。而且,
dump.py
“应用程序”的用户可以从任何定义了任何期望的 MetaPickler 的 Python
包中利用该“MetaPickler”。出于此目的而
编写合适的元类如下所示:
class MetaPickler(type): |
这种安排的过人之处在于应用程序程序员不需要了解要使用哪种序列化 — 甚至不需要了解是否 在命令行添加序列化或其它一些跨各部分的能力。
也许元类最常见的用法与 MetaPickler 类似:添加、删除、重命名或替换所产生类中定义的方法。在我们的示例中,在创建类
Data
(以及由此再创建随后的每个实例)时,“本机”
Data.dump()
方法被应用程序之外的某个方法所替代。
存在着这样的编程环境:类往往比实例更重要。例如, 说明性迷你语言(declarative mini-languages)是 Python 库,在类声明中直接表示了它的程序逻辑。David 在其文章“ Create declarative mini-languages”中研究了此问题。在这种情形下,使用元类来影响类创建过程是相当有用的。
一种基于类的声明性框架是
gnosis.xml.validity
。
在此框架下,可以声明许多“有效性类”,这些类表示了一组有关有效 XML 文档的约束。这些声明非常接近于 DTD
中所包含的那些声明。例如,可以用以下代码来配置一篇“dissertation”文档:
清单 10. simple_diss.py gnosis.xml.validity 规则
from gnosis.xml.validity import * |
如果在没有正确组件子元素的情形下尝试实例化
dissertation
类,则会产生一个描述性异常;对于每个
子元素,亦是如此。当只有一种明确的方式可以将参数“提升”为正确的类型 时,会从较简单的参数来生成正确的子元素。
即使有效性类常常(非正式)基于预先存在的 DTD,这些类的实例也还是将自己打印成简单的 XML 文档片段,例如:
>>> from simple_diss import * |
通过使用元类来创建有效性类,我们可以从类声明中生成 DTD(我们在这样做的同时,可以向这些有效性类额外添加一个方法):
>>> from gnosis.magic import DTDGenerator, \ |
包
gnosis.xml.validity
不知道 DTD 和内部子集。那些概念和能力完全由元类
DTDGenerator
引入进来,对
gnosis.xml.validity
或
simple_diss.py
不做
任何更改。
DTDGenerator
不将自身的
.__str__()
方法替换进它产生的类 — 您仍然可以打印简单的 XML 片段 — 但元类可以方便地修改这种富有“魔力”的方法。
为了使用元类以及一些可以在面向方面的编程中所使用的样本元类,包
gnosis.magic
包含几个实用程序。其中最
重要的实用程序是
import_with_metaclass()
。
在上例中所用到的这个函数使您能导入第三方的模块,但您要用定制元类而不是用
type
来创建所有模块类。无论您想对第三方模块赋予什么样的新能力,您都可以在创建的元类内定义该能力(或者从其它地方一起获得)。
gnosis.magic
包含一些可插入的序列化元类;其它一些包可能包含跟踪能力、对象持久性、异常日志记录或其它能力。
import_with_metclass()
函数展示了元类编程的几个性质:
清单 13. [gnosis.magic] 的 import_with_metaclass()
def import_with_metaclass(modname, metaklass): |
在这个函数中值得注意的样式是,用指定的元类生成普通的类
Meta
。但是,一旦将
Meta
作为祖先添加之后,也用定制元类来生成它的后代。原则上,象
Meta
这样的类
既可以带有元类生成器(metaclass producer)
也可以带有一组可继承的方法 — Meta
类的这两个方面是无关的。
- 您可以参阅本文在 developerWorks 全球站点上的
英文原文.
- 有一本关于元类方面的有用书籍:
Putting Metaclasses to
Work(Ira R. Forman 和 Scott Danforth 著,Addison-Wesley,1999)。
- 对于 Python 中的元类,Guido van Rossum 的文章“
Unifying types and classes in Python 2.2”也很有用。
- 请阅读
developerWorks 上 David 撰写的文章:
- 不知道 Tim Peters?您应该知道!从
Tim 的 wiki 页面开始了解他,然后通过比较定期地阅读 news:comp.lang.python 最终了解他。
- 对 AOP 感到陌生?您可能对香港科技大学 Ken Wing Kuen Lee 撰写的文章“
Introduction
to Aspect-Oriented Programming”(PDF)感兴趣。
-
Gregor
Kiczales 和他的团队于 20 世纪 90 年代在 Xerox PARC 创造了
面向方面的编程这个术语,并坚信它能使软件开发人员花更多的时间来编写代码,花较少的时间来纠正代码。
- Karl J. Lieberherr 所撰写的“
Connections
between Demeter/Adaptive Programming and Aspect-Oriented Programming
(AOP)”也描述了 AOP。
- 您还可以发现
面向主题的编程(subject-oriented programming)也很有趣。正如 IBM Research 的人员所描述的,实质上,它与面向方面的编程是同一回事。
- 在 David 的站点,查找并
下载 Gnosis 实用程序,本文中曾多次提到过它们。
- 在
developerWorksLinux 专区查找更多有关
Linux 开发人员的参考资料。
David Mertz 觉得撰写连载文章或编写半协同程序是很伤脑筋的事,但他还是硬着头皮开始讨论元类。可以通过 mertz@gnosis.cx 与他联系;也可以在 他的个人 Web 页面上了解他的生活。欢迎就现在、过去和未来的专栏文章,提出建议和意见。了解他即将出版的书籍 Text Processing in Python 。
Michele Simionato 是一位普通而平凡的理论物理学家,一次量子波动使他对 Python 产生了兴趣,当然,如果没有遇到 David Mertz 的话,那也不会有这样的转变。他愿意让读者来判断最终结果。可以通过 mis6+@pitt.edu与他联系。