2017年高考全国卷3理科数学21题(1)的做法探究


已知函数$f(x)=x-1-a\ln x$

(1)若$f(x)\geqslant 0$,求$a$的值$.$




魏刚 2017年6月8日於狮子山上


我的解法1:评卷老师会给满分吗?(道理看之前的内容)

\(f(x)\geqslant 0=f(1)\Rightarrow x=1\)\(f(x)\)的极值点

\(\Rightarrow f'(1)=0\Rightarrow a=1\)(这仅仅是必要条件,还需要验证,此处略去)


我的解法2:切线放缩法

易证\(\ln x\leqslant x-1\)(证明略)

\((1)\)\(a\leqslant 0\)时,$a\ln x\geqslant a(x-1)\Rightarrow x-1\geqslant a(x-1)\Rightarrow\left{

\begin{array}{ll}
x>1 \
a\leqslant 1
\end{array}
\right.\(且\)\left{
\begin{array}{ll}
0<x<1\
a\geqslant 1
\end{array}
\right.\Rightarrow a=1\(与\)a\leqslant 0$矛盾,此时无解;

\((2)\)\(a> 0\)时,\(a\ln x\leqslant a(x-1)\)

$1^\circ x-1\leqslant a(x-1)\Rightarrow\left{

\begin{array}{ll}
x>1 \
a\geqslant 1
\end{array}
\right.\(且\)\left{
\begin{array}{ll}
0<x<1\
a\leqslant 1
\end{array}
\right.\Rightarrow a=1$;

$2^\circ x-1\geqslant a(x-1)\Rightarrow\left{

\begin{array}{ll}
x>1 \
a\leqslant 1
\end{array}
\right.\(且\)\left{
\begin{array}{ll}
0<x<1\
a\geqslant 1
\end{array}
\right.\Rightarrow a=1$;

综上可知,\(a=1.\)


我的解法3:一定不妥的解法,估计学生会这样做!(与解法1结合就是满分!道理自己想!)

先猜\(a=1\)

接着证\(\ln x\leqslant x-1\)

证明:令\(g(x)=x-1-\ln x\Rightarrow g'(x)=1-\dfrac{1}{x}=\dfrac{x-1}{x}\Rightarrow g(x)\)\((0\)\(1)\)上单调递减,在\((1\)\(+\infty)\)上单调递增,\(g(x)\geqslant 0\Rightarrow \ln x\leqslant x-1.\)

这种方法逻辑上存在问题,虽然答案正确\(.\)


我的解法4:有点超纲,用到洛必达法则!

\(f(x)\geqslant 0\Rightarrow x-1\geqslant a\ln x\)

构造函数\(g(x)=\dfrac{x-1}{\ln x}\Rightarrow g'(x)=\dfrac{\ln x-1-\frac{1}{x}}{\ln^2 x}=\dfrac{h(x)}{\ln^2 x}\)

\(\Rightarrow h'(x)=x-\dfrac{1}{x^2}=\dfrac{x-1}{x^2}\Rightarrow h(x)\)\((0\)\(1)\)上单调递减,在\((1\)\(+\infty)\)上单调递增,

\(\Rightarrow h(x)\geqslant 0\Rightarrow g'(x)\geqslant 0\Rightarrow g(x)\)\((0\)\(1)\)上单调递增,在\((1\)\(+\infty)\)上单调递增,

而且\(\lim\limits_{x \to 1 }\dfrac{x-1}{\ln x}=\lim\limits_{x \to 1 }\dfrac{1}{\frac{1}{x}}=1\)

\(x>1\)时,\(a\leqslant \dfrac{x-1}{\ln x}\to 1(x\to 1)\)

\(0<x<1\)时,\(a\geqslant \dfrac{x-1}{\ln x}\to 1(x\to 1)\)

综上可知,\(a=1.\)


方法四:看参考答案


posted on 2017-05-31 16:16  狮山数学  阅读(3382)  评论(0编辑  收藏  举报