成都市2014级“一诊”21题第2问的三种解法



已知函数\(f(x)=x\ln(x+1)+(\dfrac{1}{2}-a)x+2-a\)\(a\in\textbf{R}.\)

(II)当\(a\in\textbf{Z}\)时,若存在\(x\geqslant 0\),使不等式\(f(x)<0\)成立,求\(a\)的取值范围\(.\)


方法1:全分离(详见参考答案)


方法2:半分离(曲变直)

\(\exists x\geqslant 0,f(x)=x\ln(x+1)+(\dfrac{1}{2}-a)x+2-a<0\)

\(\Rightarrow \exists x\geqslant 0,x\ln(x+1)+\dfrac{1}{2}x+2<a(x+1)\)

\(g(x)=x\ln(x+1)+\dfrac{1}{2}x+2\),则

\(g'(x)=\ln(x+1)+\dfrac{x}{x+1}+\dfrac{1}{2}=\ln(x+1)-\dfrac{1}{x+1}+\dfrac{3}{2}\)

tu1

函数\(g(x)\)在点\(x=x_0\)处的切线的斜率为\(\ln(x_0+1)-\dfrac{1}{x_0+1}+\dfrac{3}{2}\)

\(\Rightarrow\)函数\(g(x)\)在点\(x=x_0\)处的切线方程\(y-(x_0\ln(x_0+1)+\dfrac{1}{2}x_0+2)=(\ln(x_0+1)-\dfrac{1}{x_0+1}+\dfrac{3}{2})(x-x_0)\)与直线\(y=a(x+1)\)重合,
\(\Rightarrow \left\{ \begin{array}{ll} \ln(x_0+1)+\dfrac{x_0}{x_0+1}+\frac{1}{2}=a \\ x_0\ln(x_0+1)+\frac{1}{2}x_0+2=a(x_0+1) \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} a=4-(x_0+1)-\frac{1}{x_0+1} \\ \ln(x_0+1)+x_0-\frac{3}{2}=0\Rightarrow 0<x_0<1 \end{array} \right.\)

\(\Rightarrow \dfrac{3}{2}<4-(x_0+1)-\frac{1}{x_0+1} <2\)

综上可知,\(a=2.\)(图还未配)


方法3:不分离(低成本探究)

\(f'(x)=\ln(x+1)+\dfrac{x}{x+1}+\dfrac{1}{2}-a=\ln(x+1)-\dfrac{1}{x+1}+\dfrac{3}{2}-a\)

\(\Rightarrow f'(x)\)单调递增\(\Rightarrow f'(0)=\dfrac{1}{2}-a\)

\(1^o\)\(a\leqslant \dfrac{1}{2}\)时,\(f'(x)\geqslant f'(0)=\dfrac{1}{2}-a\geqslant 0\Rightarrow f(x)_{min}=f(0)=2-a>0\),不合题意;

\(2^o\)\(a=1\)时,\(f'(x)=\ln(x+1)-\dfrac{1}{x+1}+\dfrac{1}{2}\Rightarrow f'(0)=-\dfrac{1}{2}<0,f'(1)=\ln 2>0\)

\(\Rightarrow f'(x_0)=0\Rightarrow 0<x_0<1\Rightarrow \left\{ \begin{array}{ll} \ln(x_0+1)-\dfrac{1}{x_0+1}+\dfrac{1}{2}=0 \\ f(x_0)=x_0\ln(x_0+1)-\frac{1}{2}x_0+\dfrac{3}{2} \end{array} \right.\)

\(\Rightarrow f(x_0)=-\frac{1}{x_0+1}-(x_0+1)+\dfrac{7}{2}\in (1,\dfrac{3}{2})\),不合题意;

\(3^o\)\(a=2\)时,\(f(\frac{1}{2})=\dfrac{1}{2}\ln\dfrac{3}{2}-\dfrac{3}{4}<0\),合题意\(.\)

综上可知,\(a=2.\)


posted on 2016-12-27 16:22  狮山数学  阅读(542)  评论(0编辑  收藏  举报