X264-视频帧的存取
X264的编码器结构体x264_t中的子结构体字段frames包含了4个临时视频帧序列空间:current、next、unused和reference,分别保存当前编码帧、将编码帧序列、未处理原始视频帧序列和参考帧序列,同时x264编码器申请了fenc和fdec空间用于存放已编码帧和重建帧。H264中“帧”和“片”都是图像帧,如果不加说明,他们的意义基本一样。
编码器处理视频帧的顺序如下:
首先,从YUV视频文件中读取图像存储到临时x264_picture_t变量pic_in,同时为unused申请存储空间,并用fenc指针指向这个空间。
接着,将pic_in中的图片数据拷贝到fenc所指向的空间,并在拷贝完成后对图片大小进行判断,如果长宽不是16的整数,倍则进行像素扩展;将处理后的fenc区域数据放入next区域,之后,如果存在B帧,则从next区域中取出B帧以后的P帧放到current区域中,也就是说先编码I、P帧再编码其间的B帧;否则,则直接从next区域取出一帧存入current区域。此时,current区域中存放的就是已经预处理的即将要编码的帧数据了。
最后,由于fenc区域是编码的直接对象,再将current区域中的内容拷贝到fenc中正式开始编码。x264_encoder_encode()函数实现了这个过程。
x264_encoder_encode():编码一帧YUV为H264。
调用的函数如下:
x264_frame_pop_unused():获取一个x264_frame_t类型结构体fenc,如果frame.unused[]队列不为空,就调用x264_frame_pop从unused[]队列取出一个现成的;否则就调用x264_frame_new()创建一个新的。
x264_frame_copy_picure():将输入的数据拷贝至fenc。
x264_lookahead_put_frame():将fenc放入lookanead.next.list[]队列,等待确定帧的类型。
x264_lookahead_get_frame():通过lookahead分析帧类型。将帧放入frames.current[]队列。
x264_frame_shift():从frames.current[]队列中取出一帧用于编码。
x264_reference_update():更新参考帧队列。
x264_reference_reset():如果为IDR帧,调用该函数清空参考帧列表。
x264_reference_hierarchy_reset():如果是非IDR的I、B、P帧,调用该函数。
x264_reference_build_list():创建参考列表list0和list1。
x264_ratecontrol_start():开启码率控制。
x264_slice_init():创建Slice Header。
x264_slices_write():编码数据。
x264_encoder_frame_end():编码结束后做一些后续处理。
函数代码:
//编码一帧数据 int x264_encoder_encode( x264_t *h, x264_nal_t **pp_nal, int *pi_nal, x264_picture_t *pic_in, x264_picture_t *pic_out ) { x264_t *thread_current, *thread_prev, *thread_oldest; int i_nal_type, i_nal_ref_idc, i_global_qp; int overhead = NALU_OVERHEAD; #if HAVE_OPENCL if( h->opencl.b_fatal_error ) return -1; #endif if( h->i_thread_frames > 1 ) { thread_prev = h->thread[ h->i_thread_phase ]; h->i_thread_phase = (h->i_thread_phase + 1) % h->i_thread_frames; thread_current = h->thread[ h->i_thread_phase ]; thread_oldest = h->thread[ (h->i_thread_phase + 1) % h->i_thread_frames ]; x264_thread_sync_context( thread_current, thread_prev ); x264_thread_sync_ratecontrol( thread_current, thread_prev, thread_oldest ); h = thread_current; } else { thread_current = thread_oldest = h; } h->i_cpb_delay_pir_offset = h->i_cpb_delay_pir_offset_next; *pi_nal = 0; *pp_nal = NULL; if( pic_in != NULL ) { //获取一帧的空间fenc,用来存放待编码的帧 x264_frame_t *fenc = x264_frame_pop_unused( h, 0 ); if( !fenc ) return -1; //外部像素数据传递到内部系统 //pic_in(外部结构体x264_picture_t)到fenc(内部结构体x264_frame_t) if( x264_frame_copy_picture( h, fenc, pic_in ) < 0 ) return -1; //宽和高都确保是16的整数倍(宏块宽度的整数倍) if( h->param.i_width != 16 * h->mb.i_mb_width || h->param.i_height != 16 * h->mb.i_mb_height ) x264_frame_expand_border_mod16( h, fenc );//扩展至16整数倍 fenc->i_frame = h->frames.i_input++; if( fenc->i_frame == 0 ) h->frames.i_first_pts = fenc->i_pts; if( h->frames.i_bframe_delay && fenc->i_frame == h->frames.i_bframe_delay ) h->frames.i_bframe_delay_time = fenc->i_pts - h->frames.i_first_pts; if( h->param.b_vfr_input && fenc->i_pts <= h->frames.i_largest_pts ) x264_log( h, X264_LOG_WARNING, "non-strictly-monotonic PTS\n" ); h->frames.i_second_largest_pts = h->frames.i_largest_pts; h->frames.i_largest_pts = fenc->i_pts; if( (fenc->i_pic_struct < PIC_STRUCT_AUTO) || (fenc->i_pic_struct > PIC_STRUCT_TRIPLE) ) fenc->i_pic_struct = PIC_STRUCT_AUTO; if( fenc->i_pic_struct == PIC_STRUCT_AUTO ) { #if HAVE_INTERLACED int b_interlaced = fenc->param ? fenc->param->b_interlaced : h->param.b_interlaced; #else int b_interlaced = 0; #endif if( b_interlaced ) { int b_tff = fenc->param ? fenc->param->b_tff : h->param.b_tff; fenc->i_pic_struct = b_tff ? PIC_STRUCT_TOP_BOTTOM : PIC_STRUCT_BOTTOM_TOP; } else fenc->i_pic_struct = PIC_STRUCT_PROGRESSIVE; } if( h->param.rc.b_mb_tree && h->param.rc.b_stat_read ) { if( x264_macroblock_tree_read( h, fenc, pic_in->prop.quant_offsets ) ) return -1; } else x264_stack_align( x264_adaptive_quant_frame, h, fenc, pic_in->prop.quant_offsets ); if( pic_in->prop.quant_offsets_free ) pic_in->prop.quant_offsets_free( pic_in->prop.quant_offsets ); //降低分辨率处理(原来的一半),线性内插 //注意这里并不是6抽头滤波器的半像素内插 if( h->frames.b_have_lowres ) x264_frame_init_lowres( h, fenc ); //fenc放入lookahead.next.list[]队列,等待确定帧类型 x264_lookahead_put_frame( h, fenc ); if( h->frames.i_input <= h->frames.i_delay + 1 - h->i_thread_frames ) { /* Nothing yet to encode, waiting for filling of buffers */ pic_out->i_type = X264_TYPE_AUTO; return 0; } } else { //输入数据为空的时候,不需要lookahead x264_pthread_mutex_lock( &h->lookahead->ifbuf.mutex ); h->lookahead->b_exit_thread = 1; x264_pthread_cond_broadcast( &h->lookahead->ifbuf.cv_fill ); x264_pthread_mutex_unlock( &h->lookahead->ifbuf.mutex ); } h->i_frame++; //通过lookahead分析帧类型 if( !h->frames.current[0] ) x264_lookahead_get_frames( h ); if( !h->frames.current[0] && x264_lookahead_is_empty( h ) ) return x264_encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out ); //从frames.current[]队列取出1帧[0]用于编码 h->fenc = x264_frame_shift( h->frames.current ); /* If applicable, wait for previous frame reconstruction to finish */ if( h->param.b_sliced_threads ) if( x264_threadpool_wait_all( h ) < 0 ) return -1; if( h->i_frame == h->i_thread_frames - 1 ) h->i_reordered_pts_delay = h->fenc->i_reordered_pts; if( h->reconfig ) { x264_encoder_reconfig_apply( h, &h->reconfig_h->param ); h->reconfig = 0; } if( h->fenc->param ) { x264_encoder_reconfig_apply( h, h->fenc->param ); if( h->fenc->param->param_free ) { h->fenc->param->param_free( h->fenc->param ); h->fenc->param = NULL; } } //更新参考帧队列frames.reference[].若为B帧则不更新 //重建帧fdec移植参考帧列表,新建一个fdec if( x264_reference_update( h ) ) return -1; h->fdec->i_lines_completed = -1; if( !IS_X264_TYPE_I( h->fenc->i_type ) ) { int valid_refs_left = 0; for( int i = 0; h->frames.reference[i]; i++ ) if( !h->frames.reference[i]->b_corrupt ) valid_refs_left++; if( !valid_refs_left ) { h->fenc->b_keyframe = 1; h->fenc->i_type = X264_TYPE_IDR; } } if( h->fenc->b_keyframe ) { h->frames.i_last_keyframe = h->fenc->i_frame; if( h->fenc->i_type == X264_TYPE_IDR ) { h->i_frame_num = 0; h->frames.i_last_idr = h->fenc->i_frame; } } h->sh.i_mmco_command_count = h->sh.i_mmco_remove_from_end = 0; h->b_ref_reorder[0] = h->b_ref_reorder[1] = 0; h->fdec->i_poc = h->fenc->i_poc = 2 * ( h->fenc->i_frame - X264_MAX( h->frames.i_last_idr, 0 ) ); if( h->fenc->i_type == X264_TYPE_IDR ) { //I与IDR区别 //注意IDR会导致参考帧列清空,而I不会 //I图像之后的图像可以引用I图像之间的图像做运动参考 i_nal_type = NAL_SLICE_IDR; i_nal_ref_idc = NAL_PRIORITY_HIGHEST; h->sh.i_type = SLICE_TYPE_I; //若是IDR帧,则清空所有参考帧 x264_reference_reset( h ); h->frames.i_poc_last_open_gop = -1; } else if( h->fenc->i_type == X264_TYPE_I ) { //I与IDR区别 //注意IDR会导致参考帧列清空,而I不会 //I图像之后的图像可以引用I图像之间的图像做运动参考 i_nal_type = NAL_SLICE; i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/ h->sh.i_type = SLICE_TYPE_I; x264_reference_hierarchy_reset( h ); if( h->param.b_open_gop ) h->frames.i_poc_last_open_gop = h->fenc->b_keyframe ? h->fenc->i_poc : -1; } else if( h->fenc->i_type == X264_TYPE_P ) { i_nal_type = NAL_SLICE; i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/ h->sh.i_type = SLICE_TYPE_P; x264_reference_hierarchy_reset( h ); h->frames.i_poc_last_open_gop = -1; } else if( h->fenc->i_type == X264_TYPE_BREF ) { //可以作为参考帧的B帧,这是个特色 i_nal_type = NAL_SLICE; i_nal_ref_idc = h->param.i_bframe_pyramid == X264_B_PYRAMID_STRICT ? NAL_PRIORITY_LOW : NAL_PRIORITY_HIGH; h->sh.i_type = SLICE_TYPE_B; x264_reference_hierarchy_reset( h ); } else { //最普通 i_nal_type = NAL_SLICE; i_nal_ref_idc = NAL_PRIORITY_DISPOSABLE; h->sh.i_type = SLICE_TYPE_B; } //重建帧与编码帧的赋值... h->fdec->i_type = h->fenc->i_type; h->fdec->i_frame = h->fenc->i_frame; h->fenc->b_kept_as_ref = h->fdec->b_kept_as_ref = i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE && h->param.i_keyint_max > 1; h->fdec->mb_info = h->fenc->mb_info; h->fdec->mb_info_free = h->fenc->mb_info_free; h->fenc->mb_info = NULL; h->fenc->mb_info_free = NULL; h->fdec->i_pts = h->fenc->i_pts; if( h->frames.i_bframe_delay ) { int64_t *prev_reordered_pts = thread_current->frames.i_prev_reordered_pts; h->fdec->i_dts = h->i_frame > h->frames.i_bframe_delay ? prev_reordered_pts[ (h->i_frame - h->frames.i_bframe_delay) % h->frames.i_bframe_delay ] : h->fenc->i_reordered_pts - h->frames.i_bframe_delay_time; prev_reordered_pts[ h->i_frame % h->frames.i_bframe_delay ] = h->fenc->i_reordered_pts; } else h->fdec->i_dts = h->fenc->i_reordered_pts; if( h->fenc->i_type == X264_TYPE_IDR ) h->i_last_idr_pts = h->fdec->i_pts; //创建参考帧列表list0和list1 x264_reference_build_list( h, h->fdec->i_poc ); //用于输出 if( h->param.b_sliced_threads ) { for( int i = 0; i < h->param.i_threads; i++ ) { bs_init( &h->thread[i]->out.bs, h->thread[i]->out.p_bitstream, h->thread[i]->out.i_bitstream ); h->thread[i]->out.i_nal = 0; } } else { bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream ); h->out.i_nal = 0; } if( h->param.b_aud ) { int pic_type; if( h->sh.i_type == SLICE_TYPE_I ) pic_type = 0; else if( h->sh.i_type == SLICE_TYPE_P ) pic_type = 1; else if( h->sh.i_type == SLICE_TYPE_B ) pic_type = 2; else pic_type = 7; x264_nal_start( h, NAL_AUD, NAL_PRIORITY_DISPOSABLE ); bs_write( &h->out.bs, 3, pic_type ); bs_rbsp_trailing( &h->out.bs ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + NALU_OVERHEAD; } h->i_nal_type = i_nal_type; h->i_nal_ref_idc = i_nal_ref_idc; if( h->param.b_intra_refresh ) { if( IS_X264_TYPE_I( h->fenc->i_type ) ) { h->fdec->i_frames_since_pir = 0; h->b_queued_intra_refresh = 0; /* PIR is currently only supported with ref == 1, so any intra frame effectively refreshes * the whole frame and counts as an intra refresh. */ h->fdec->f_pir_position = h->mb.i_mb_width; } else if( h->fenc->i_type == X264_TYPE_P ) { int pocdiff = (h->fdec->i_poc - h->fref[0][0]->i_poc)/2; float increment = X264_MAX( ((float)h->mb.i_mb_width-1) / h->param.i_keyint_max, 1 ); h->fdec->f_pir_position = h->fref[0][0]->f_pir_position; h->fdec->i_frames_since_pir = h->fref[0][0]->i_frames_since_pir + pocdiff; if( h->fdec->i_frames_since_pir >= h->param.i_keyint_max || (h->b_queued_intra_refresh && h->fdec->f_pir_position + 0.5 >= h->mb.i_mb_width) ) { h->fdec->f_pir_position = 0; h->fdec->i_frames_since_pir = 0; h->b_queued_intra_refresh = 0; h->fenc->b_keyframe = 1; } h->fdec->i_pir_start_col = h->fdec->f_pir_position+0.5; h->fdec->f_pir_position += increment * pocdiff; h->fdec->i_pir_end_col = h->fdec->f_pir_position+0.5; /* If our intra refresh has reached the right side of the frame, we're done. */ if( h->fdec->i_pir_end_col >= h->mb.i_mb_width - 1 ) { h->fdec->f_pir_position = h->mb.i_mb_width; h->fdec->i_pir_end_col = h->mb.i_mb_width - 1; } } } if( h->fenc->b_keyframe ) { //每个关键帧前面重复加上SPS和PPS if( h->param.b_repeat_headers ) { x264_nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST ); x264_sps_write( &h->out.bs, h->sps ); if( x264_nal_end( h ) ) return -1; if( h->param.i_avcintra_class ) h->out.nal[h->out.i_nal-1].i_padding = 256 - bs_pos( &h->out.bs ) / 8 - 2*NALU_OVERHEAD; overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + NALU_OVERHEAD; x264_nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST ); x264_pps_write( &h->out.bs, h->sps, h->pps ); if( x264_nal_end( h ) ) return -1; if( h->param.i_avcintra_class ) h->out.nal[h->out.i_nal-1].i_padding = 256 - h->out.nal[h->out.i_nal-1].i_payload - NALU_OVERHEAD; overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + NALU_OVERHEAD; } if( h->i_thread_frames == 1 && h->sps->vui.b_nal_hrd_parameters_present ) { x264_hrd_fullness( h ); x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_buffering_period_write( h, &h->out.bs ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } } for( int i = 0; i < h->fenc->extra_sei.num_payloads; i++ ) { x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_write( &h->out.bs, h->fenc->extra_sei.payloads[i].payload, h->fenc->extra_sei.payloads[i].payload_size, h->fenc->extra_sei.payloads[i].payload_type ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; if( h->fenc->extra_sei.sei_free ) { h->fenc->extra_sei.sei_free( h->fenc->extra_sei.payloads[i].payload ); h->fenc->extra_sei.payloads[i].payload = NULL; } } if( h->fenc->extra_sei.sei_free ) { h->fenc->extra_sei.sei_free( h->fenc->extra_sei.payloads ); h->fenc->extra_sei.payloads = NULL; h->fenc->extra_sei.sei_free = NULL; } //特殊的SEI信息(Avid等解码器需要) if( h->fenc->b_keyframe ) { if( h->param.b_repeat_headers && h->fenc->i_frame == 0 && !h->param.i_avcintra_class ) { x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_version_write( h, &h->out.bs ) ) return -1; if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->fenc->i_type != X264_TYPE_IDR ) { int time_to_recovery = h->param.b_open_gop ? 0 : X264_MIN( h->mb.i_mb_width - 1, h->param.i_keyint_max ) + h->param.i_bframe - 1; x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_recovery_point_write( h, &h->out.bs, time_to_recovery ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } } if( h->param.i_frame_packing >= 0 && (h->fenc->b_keyframe || h->param.i_frame_packing == 5) ) { x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_frame_packing_write( h, &h->out.bs ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->sps->vui.b_pic_struct_present || h->sps->vui.b_nal_hrd_parameters_present ) { x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_pic_timing_write( h, &h->out.bs ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( !IS_X264_TYPE_B( h->fenc->i_type ) && h->b_sh_backup ) { h->b_sh_backup = 0; x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_dec_ref_pic_marking_write( h, &h->out.bs ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->fenc->b_keyframe && h->param.b_intra_refresh ) h->i_cpb_delay_pir_offset_next = h->fenc->i_cpb_delay; if( h->param.i_avcintra_class ) { x264_nal_start( h, NAL_FILLER, NAL_PRIORITY_DISPOSABLE ); x264_filler_write( h, &h->out.bs, 0 ); if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + NALU_OVERHEAD; x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_avcintra_umid_write( h, &h->out.bs ) < 0 ) return -1; if( x264_nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; int unpadded_len; int total_len; if( h->param.i_height == 1080 ) { unpadded_len = 5780; total_len = 17*512; } else { unpadded_len = 2900; total_len = 9*512; } x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_avcintra_vanc_write( h, &h->out.bs, unpadded_len ) < 0 ) return -1; if( x264_nal_end( h ) ) return -1; h->out.nal[h->out.i_nal-1].i_padding = total_len - h->out.nal[h->out.i_nal-1].i_payload - SEI_OVERHEAD; overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + SEI_OVERHEAD; } //码率控制单元初始化 x264_ratecontrol_start( h, h->fenc->i_qpplus1, overhead*8 ); i_global_qp = x264_ratecontrol_qp( h ); pic_out->i_qpplus1 = h->fdec->i_qpplus1 = i_global_qp + 1; if( h->param.rc.b_stat_read && h->sh.i_type != SLICE_TYPE_I ) { x264_reference_build_list_optimal( h ); x264_reference_check_reorder( h ); } if( h->i_ref[0] ) h->fdec->i_poc_l0ref0 = h->fref[0][0]->i_poc; //创建Slice Header x264_slice_init( h, i_nal_type, i_global_qp ); //加权预测 if( h->sh.i_type == SLICE_TYPE_B ) x264_macroblock_bipred_init( h ); x264_weighted_pred_init( h ); if( i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE ) h->i_frame_num++; h->i_threadslice_start = 0; h->i_threadslice_end = h->mb.i_mb_height; if( h->i_thread_frames > 1 ) { x264_threadpool_run( h->threadpool, (void*)x264_slices_write, h ); h->b_thread_active = 1; } else if( h->param.b_sliced_threads ) { if( x264_threaded_slices_write( h ) ) return -1; } else{ //真正的编码——编码1个图像帧(注意这里“slices”后面有“s”) if( (intptr_t)x264_slices_write( h ) ) return -1; } //结束的时候做一些处理,记录一些统计信息 //输出NALU //输出重建帧 return x264_encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out ); }
在函数x264_frame_pop_unused()和函数x264_frame_copy_picture()中,我们得到视频帧,并把视频帧存到fenc之中,即待编码图像。
x264_frame_pop_unused():
//获取一帧的编码帧fenc或者重建帧fdec x264_frame_t *x264_frame_pop_unused( x264_t *h, int b_fdec ) { x264_frame_t *frame; if( h->frames.unused[b_fdec][0] )//unused队列不为空 frame = x264_frame_pop( h->frames.unused[b_fdec] );//从unused队列取 else frame = x264_frame_new( h, b_fdec );//分配一帧空间 if( !frame ) return NULL; frame->b_last_minigop_bframe = 0; frame->i_reference_count = 1; frame->b_intra_calculated = 0; frame->b_scenecut = 1; frame->b_keyframe = 0; frame->b_corrupt = 0; frame->i_slice_count = h->param.b_sliced_threads ? h->param.i_threads : 1; memset( frame->weight, 0, sizeof(frame->weight) ); memset( frame->f_weighted_cost_delta, 0, sizeof(frame->f_weighted_cost_delta) ); return frame; }
//拷贝帧数据 //src(外部结构体x264_picture_t)到dst(内部结构体x264_frame_t) int x264_frame_copy_picture( x264_t *h, x264_frame_t *dst, x264_picture_t *src ) { int i_csp = src->img.i_csp & X264_CSP_MASK; //注意转换后只有3种内部colorspace:X264_CSP_NV12(对应YUV420),X264_CSP_NV16(对应YUV422),X264_CSP_I444(对应YUV444) if( dst->i_csp != x264_frame_internal_csp( i_csp ) ) { x264_log( h, X264_LOG_ERROR, "Invalid input colorspace\n" ); return -1; } #if HIGH_BIT_DEPTH if( !(src->img.i_csp & X264_CSP_HIGH_DEPTH) ) { x264_log( h, X264_LOG_ERROR, "This build of x264 requires high depth input. Rebuild to support 8-bit input.\n" ); return -1; } #else if( src->img.i_csp & X264_CSP_HIGH_DEPTH ) { x264_log( h, X264_LOG_ERROR, "This build of x264 requires 8-bit input. Rebuild to support high depth input.\n" ); return -1; } #endif if( BIT_DEPTH != 10 && i_csp == X264_CSP_V210 ) { x264_log( h, X264_LOG_ERROR, "v210 input is only compatible with bit-depth of 10 bits\n" ); return -1; } //赋值赋值赋值 dst->i_type = src->i_type; dst->i_qpplus1 = src->i_qpplus1; dst->i_pts = dst->i_reordered_pts = src->i_pts; dst->param = src->param; dst->i_pic_struct = src->i_pic_struct; dst->extra_sei = src->extra_sei; dst->opaque = src->opaque; dst->mb_info = h->param.analyse.b_mb_info ? src->prop.mb_info : NULL; dst->mb_info_free = h->param.analyse.b_mb_info ? src->prop.mb_info_free : NULL; uint8_t *pix[3]; int stride[3]; if( i_csp == X264_CSP_V210 ) { stride[0] = src->img.i_stride[0]; pix[0] = src->img.plane[0]; h->mc.plane_copy_deinterleave_v210( dst->plane[0], dst->i_stride[0], dst->plane[1], dst->i_stride[1], (uint32_t *)pix[0], stride[0]/sizeof(uint32_t), h->param.i_width, h->param.i_height ); } else if( i_csp >= X264_CSP_BGR ) { stride[0] = src->img.i_stride[0]; pix[0] = src->img.plane[0]; if( src->img.i_csp & X264_CSP_VFLIP ) { pix[0] += (h->param.i_height-1) * stride[0]; stride[0] = -stride[0]; } int b = i_csp==X264_CSP_RGB; h->mc.plane_copy_deinterleave_rgb( dst->plane[1+b], dst->i_stride[1+b], dst->plane[0], dst->i_stride[0], dst->plane[2-b], dst->i_stride[2-b], (pixel*)pix[0], stride[0]/sizeof(pixel), i_csp==X264_CSP_BGRA ? 4 : 3, h->param.i_width, h->param.i_height ); } else { int v_shift = CHROMA_V_SHIFT; get_plane_ptr( h, src, &pix[0], &stride[0], 0, 0, 0 ); //拷贝像素 h->mc.plane_copy( dst->plane[0], dst->i_stride[0], (pixel*)pix[0], stride[0]/sizeof(pixel), h->param.i_width, h->param.i_height ); if( i_csp == X264_CSP_NV12 || i_csp == X264_CSP_NV16 ) { get_plane_ptr( h, src, &pix[1], &stride[1], 1, 0, v_shift ); h->mc.plane_copy( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/sizeof(pixel), h->param.i_width, h->param.i_height>>v_shift ); } else if( i_csp == X264_CSP_I420 || i_csp == X264_CSP_I422 || i_csp == X264_CSP_YV12 || i_csp == X264_CSP_YV16 ) { int uv_swap = i_csp == X264_CSP_YV12 || i_csp == X264_CSP_YV16; get_plane_ptr( h, src, &pix[1], &stride[1], uv_swap ? 2 : 1, 1, v_shift ); get_plane_ptr( h, src, &pix[2], &stride[2], uv_swap ? 1 : 2, 1, v_shift ); h->mc.plane_copy_interleave( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/sizeof(pixel), (pixel*)pix[2], stride[2]/sizeof(pixel), h->param.i_width>>1, h->param.i_height>>v_shift ); } else //if( i_csp == X264_CSP_I444 || i_csp == X264_CSP_YV24 ) { get_plane_ptr( h, src, &pix[1], &stride[1], i_csp==X264_CSP_I444 ? 1 : 2, 0, 0 ); get_plane_ptr( h, src, &pix[2], &stride[2], i_csp==X264_CSP_I444 ? 2 : 1, 0, 0 ); h->mc.plane_copy( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/sizeof(pixel), h->param.i_width, h->param.i_height ); h->mc.plane_copy( dst->plane[2], dst->i_stride[2], (pixel*)pix[2], stride[2]/sizeof(pixel), h->param.i_width, h->param.i_height ); } } return 0; }
从上面的代码可以看出,x264_frame_t和x264_picture_t结构体中的很多字段一模一样,函数将x264_picture_t中字段的值赋值给了x264_frame_t,没有其他过多操作。