验证码识别 图像降噪 Python (一)
原始图片:
降噪后的图片
实现代码:
# coding:utf-8 import sys, os from PIL import Image, ImageDraw # 二值数组 t2val = {} def twoValue(image, G): for y in xrange(0, image.size[1]): for x in xrange(0, image.size[0]): g = image.getpixel((x, y)) if g > G: t2val[(x, y)] = 1 else: t2val[(x, y)] = 0 # 根据一个点A的RGB值,与周围的8个点的RBG值比较,设定一个值N(0 <N <8),当A的RGB值与周围8个点的RGB相等数小于N时,此点为噪点 # G: Integer 图像二值化阀值 # N: Integer 降噪率 0 <N <8 # Z: Integer 降噪次数 # 输出 # 0:降噪成功 # 1:降噪失败 def clearNoise(image, N, Z): for i in xrange(0, Z): t2val[(0, 0)] = 1 t2val[(image.size[0] - 1, image.size[1] - 1)] = 1 for x in xrange(1, image.size[0] - 1): for y in xrange(1, image.size[1] - 1): nearDots = 0 L = t2val[(x, y)] if L == t2val[(x - 1, y - 1)]: nearDots += 1 if L == t2val[(x - 1, y)]: nearDots += 1 if L == t2val[(x - 1, y + 1)]: nearDots += 1 if L == t2val[(x, y - 1)]: nearDots += 1 if L == t2val[(x, y + 1)]: nearDots += 1 if L == t2val[(x + 1, y - 1)]: nearDots += 1 if L == t2val[(x + 1, y)]: nearDots += 1 if L == t2val[(x + 1, y + 1)]: nearDots += 1 if nearDots < N: t2val[(x, y)] = 1 def saveImage(filename, size): image = Image.new("1", size) draw = ImageDraw.Draw(image) for x in xrange(0, size[0]): for y in xrange(0, size[1]): draw.point((x, y), t2val[(x, y)]) image.save(filename) for i in range(1,21): path = "/" + str(i) + ".jpg" image = Image.open(path).convert("L") twoValue(image, 100) clearNoise(image, 2, 1) path1 = "/" + str(i) + ".png" saveImage(path1, image.size)
如果觉得对您有帮助,麻烦您点一下推荐,谢谢!
好记忆不如烂笔头
好记忆不如烂笔头