tornado 07 数据库—ORM—SQLAlchemy—查询
tornado 07 数据库—ORM—SQLAlchemy—查询
引言
#上节课使用query从数据库查询到了结果,但是query返回的对象是直接可用的吗
#在query.py内输入一下内容 from connect import session from user_modules import User rs = session.query(User).filter(User.username=='xuchengcheng') #根据返回结果来看,rs是一个query对象,打印出来可以看到转化过后的SQL # print(rs,type(rs)) print(session.query(User).filter(User.username=='xuchengcheng').all()) #这个返回的是一个list,列表里面是一个类 print(session.query(User).filter(User.username=='xuchengcheng').first()) #这个返回的是一个类的实例化 print(session.query(User)[0]) #索引为0的值,类似于first,但是不等同于,空列表用这个会报错 rs = session.query(User).filter(User.username=='xuchengcheng').all() # print(rs) 返回的也是一个列表 print(rs[0].username)#列表所以为0的类的实例化,然后用点方法来取出username print(getattr(rs[0],'username')) #这种方法也可以取出username rs = session.query(User.username).filter(User.username=='xuchengcheng').all() print(rs) #返回[('xuchengcheng',)],在query里面指定了某个属性值,返回的也就不是一个query对象,而是直接查询User.username的值,所以就返回了包括元组的列表 rs = session.query(User.username).filter(User.username=='xuchengcheng').first() print(rs) #返回的就是一个元组
二、条件查询
#如何通过不同的条件在SQLAlchemy中实现查询
#过滤函数filter,通俗点讲就是加条件 #filter是一个过滤函数,过滤条件都可以书写在次函数中,不同的条件之间用逗号隔开 session.query(User).filter(User.username=='xuchengcheng').all() #filter_by也是一个过滤函数,但是功能弱一点 session.query(User).filter_by(username='xuchengcheng').all()
#两者区别 #1、filter中需要添加类对象,filter_by不需要 #2、filter_by中只能添加等于的条件,不能添加不等于、大于小于等条件
快速添加数据
#中间下面download #1、点击pycharm右边database #2、点击绿色加号 DataSource--->MySQL #3、Name自定义 ; Host不变 ;Database(数据库):选择需要操作的数据库 mydb ;User:admin ; Password : 该用户下的密码Root110qwe #4、test connection 测试连接 #5、apply ----> OK #然后可以通过database里面的schemas里面的mysql快速添加内容了; 记得最后操作完点击绿色 ->DB 保存
条件查询
#条件查询 rs = session.query(User).filter(User.username=='xuchengcheng') #模糊查询 rs = session.query(User.username).filter(User.username.like('%cheng%')).all() #模糊查询like rs = session.query(User.username).filter(User.username.notlike('%cheng%')).all()#模糊查询notlike #精确查询 rs = session.query(User.username).filter(User.username.is_(None)).all()#精确查询is,需加上 ‘_’ rs = session.query(User.username).filter(User.username.isnot(None)).all() #精确查询isnot #范围查询 rs = session.query(User.username).filter(User.username.in_(['xuchengcheng','zhouzhou'])).all() #范围查找in_ rs = session.query(User.username).filter(User.username.notin_(['xuchengcheng','zhouzhou'])).all()#范围查找notin_ #limit,offset,slice print(session.query(User.username).limit(3).all()) #从前向后顺序查循前三条 print(session.query(User.username).offset(2).all()) #偏移2个,前面两个数据不看,从第三个数据开始查询 print(session.query(User.username).slice(1,3).all()) #切片,索引1到2的数据 # print(session.query(User.username).filter(User.username=='xuchengcheng').one()) #只能有一个数据,如果有多个xuchengcheng就会报错;可以用来测试是否只有一条 #排序 from sqlalchemy import desc #desc是需要导入的 print(session.query(User.username,User.id).filter(User.username!='xuchengcheng').order_by(User.id).all()) #查询不等于xuchengcheng的username,并且根据id的顺序来排序(通过order_by) print(session.query(User.username,User.id).filter(User.username!='xuchengcheng').order_by(desc(User.id)).all()) #查询不等于xuchengcheng的username,并且根据id的反序(desc)序来排序 print(session.query(User.username,User.id).filter(User.username!='xuchengcheng').order_by(User.id).limit(2).all()) #限制数量 #函数 from sqlalchemy import func,extract #使用函数需要导入这两个 print(session.query(User.password).group_by(User.password).all()) #分组group_by print(session.query(User.password,func.count(User.id)).group_by(User.password).all()) #通过func,函数名的方法来使用函数 print(session.query(User.password,func.count(User.id)).group_by(User.password).having(func.count(User.password)>1).all()) #having通常与group_by连用,添加条件 #根据创建时间里面的时间来排序 print(session.query(extract('minute',User.creatime).label('minute'),func.count(User.id)).group_by('minute').all()) #按分钟分组 # extract:从creatime提取出分钟数 label:取别名 group_by:使用别名
三、多表查询
#多表查询 print(session.query(User,UserDetails).filter(UserDetails.id==User.id).all()) #cross join 查询方法 print(session.query(User.username,UserDetails.lost_login).join(UserDetails,UserDetails.id==User.id).filter(UserDetails.id==User.id).all()) #inner join 查询方法 #在mysql里面这两种方法没有区别 print(session.query(UserDetails.lost_login,User.username).outerjoin(User,User.id==UserDetails.id).filter(UserDetails.id==User.id).all()) #outer join 查询方法 #union 联合查询 q1 = session.query(User.id) q2 = session.query(UserDetails.id) q1.union(q2).all() #联合查询,有去重的功能 #子表查询 sql_0 = session.query(UserDetails.lost_login).subquery() #subquery声明子表 print(session.query(User,sql_0.c.lost_login)) #使用子表查询
四、原生SQL查询
#SQLAlchemy虽然可以不用担心SQL问题,但有些情况看上去比较麻烦,这些时候用原生SQL会genjia更加方便
#原生SQL查询 sql_1 = """ select * from `user` #这里需要用反引号 """ row = session.execute(sql_1) print(row) print(row.fetchone()) #得到一条 print(row.fetchmany()) #得到一个列表,里面只有一条 print(row.fetchall()) #得到所有 for i in row: #得到所有 print(i)