dynamic programming_矩阵链乘法(matrix_chain_order)_python

theory

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
记住,矩阵子链 A i ⋯ A k A_{i}\cdots A_{k} AiAk链内各个矩阵相乘的结果矩阵的规模可以仅从该子链的第一个矩阵 A i A_{i} Ai的行数 p i − 1 p_{i-1} pi1和最后一个矩阵 A k A_{k} Ak的列数 p k p_{k} pk有关
即,结果矩阵的规模为 p i − 1 × p k p_{i-1}\times p_{k} pi1×pk
这是理解 m [ 2 , 2 ] + m [ 3 , 5 ] + p 1 p 2 p 5 m[2,2]+m[3,5]+p_{1}p_{2}p_{5} m[2,2]+m[3,5]+p1p2p5中为什么是 + p 1 p 2 p 5 +p_{1}p_{2}p_{5} +p1p2p5的基础
p i 为 第 i 个 矩 阵 的 列 数 ( i > = 1 ) , 至 于 行 数 , 则 为 p i − 1 p_{i}为第i个矩阵的列数(i>=1),至于行数,则为p_{i-1} pii(i>=1),,pi1
m[2,2]相当于单个矩阵构成的矩阵链(k=i=2),行数为 p 2 − 1 = p 1 ( i = 2 ) p_{2-1}=p_{1}(i=2) p21=p1(i=2),列数为 p 2 ( k = i = 2 ) p_{2}(k=i=2) p2(k=i=2),则,规格为 p 1 × p 2 p_{1}\times p_{2} p1×p2

specific examples:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Construct the optimal solution

the parentheses solution:
在这里插入图片描述

python:

import math
def matrix_chain_order(list_p):
"""[summary]
Args:
list_p ([type]): [description]
Returns:
[type]: [description]
"""
n = len(list_p)-1
''' we could think that the table_min_costs contains the optimal cost values of the different subproblem(sub_matrix chain) scales
(from bottom to top to solve the problem)
'''
# the table to save the lowest costs to multiple the matrix chain
table_min_costs = [[0 for i in range(0, n+1)]
for j in range(0, n+1)] # (n+1)*(n+1)
# the table_save_partition save the the optimal partition point:make the multiplication cost lowest each scale cases
table_save_partition = [
[0 for i in range(0, n+1)] for j in range(0, n+1)] # (n)*(n)
''' the length of the sub_matrix chain is 1 cases could be centralized process:assign them as 0 in the table_min_costs '''
for i in range(1, n+1):
table_min_costs[i][i] = 0
''' the essential part of the algorithm: '''
# length is the chain length(traverse the all kinds of sub matrix chains cases(length>1))
for length in range(2, n+1):
''' each specific length cases have different partition schemes:
traverse all these divide cases:'''
for start_i in range(1, n-length+2): # the start_i is the index of each sub_matrix chain
# make the j-i+1==l(namely ,the length of sub_matrix chain)
end_i = start_i+length-1
# initial the costs as infinite value:
table_min_costs[start_i][end_i] = math.inf
"""
# focus on the each sepecified sub_matrix chain
# the following loop will test(run) j-i times:to find the optimal split point:
# the index to_opt_partition is the index of the optimal split point(the matrix to_opt_partition matrix will be belong to the former subproble(sub_matrix chain))
"""
for to_opt_partition in range(start_i, end_i):
''' the to_opt_partition >=start_i>=1 '''
to_lowest_cost = table_min_costs[start_i][to_opt_partition] + table_min_costs[to_opt_partition+1][end_i] + \
list_p[start_i-1]*list_p[to_opt_partition]*list_p[end_i]
if to_lowest_cost < table_min_costs[start_i][end_i]:
table_min_costs[start_i][end_i] = to_lowest_cost
table_save_partition[start_i][end_i] = to_opt_partition
return table_min_costs, table_save_partition
def print_optimal_parentheses(s, i, j):
"""
matrix_index=1
Args:
s ([list]): [table_save_partition(optimal)]
i ([int]): [start_i index of the subproblem]
j ([int]): [end_i index of the subproblem]
"""
""" the simplest case (the sub_matrix chain length is 1)
the case as the recursive exit:"""
if i == j:
print("A"+str(i), end="")
else:
print("(", end="")
print_optimal_parentheses(s, i, s[i][j])
print_optimal_parentheses(s, s[i][j]+1, j)
print(")", end="")
def test(list_p):
table_min_costs, table_save_partition = matrix_chain_order(list_p)
print_optimal_parentheses(table_save_partition, 1, len(list_p)-1)
list_p = [30, 35, 15, 5, 10, 20, 25]
test(list_p)
posted @   xuchaoxin1375  阅读(5)  评论(0编辑  收藏  举报  
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2021-06-29 wsl_win11/10上使用便捷方式安装的wsl和手动安装wsl/新用户创建/更改默认登录用户/忘记wsl用户密码/重置用户密码/wsl直接免密登陆root用户
点击右上角即可分享
微信分享提示