AM@常用等价无穷小及其证明
abstract
-
介绍常用等价无穷小及其推导
-
等价无穷小和泰勒公式
-
等价无穷小可以由泰勒公式推导(通用),通过泰勒公式的变形,可以获得各式各样的等价无穷小
-
如果不使用泰勒公式,直接从极限的角度和函数的基本性质来证明,从中也可以学习到一些技巧,开阔思路
-
常用等价无穷一览👺
-
x → 0 x\to{0} x→0时的等价无穷小
- x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln ( 1 + x ) ∼ e x − 1 x\sim\sin{x}\sim{\tan{x}}\sim\arcsin{x}\sim{\arctan{x}}\sim{\ln(1+x)}\sim{e^{x}-1} x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1
- ( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}-1\sim{\alpha{x}} (1+x)α−1∼αx; ( 1 − x ) α − 1 ∼ α ( − x ) = − α x (1-x)^{\alpha}-1\sim{\alpha(-x)=-\alpha{x}} (1−x)α−1∼α(−x)=−αx; 1 + x n − 1 ∼ 1 n x \sqrt[n]{1+x}-1\sim{\frac{1}{n}x} n1+x−1∼n1x, 1 + x − 1 − x ∼ x \sqrt{1+x}-\sqrt{1-x}\sim{x} 1+x−1−x∼x
- 1 − cos x ∼ 1 2 x 2 1-\cos{x}\sim{\frac{1}{2}x^2} 1−cosx∼21x2
- a x − 1 ∼ x ln a a^{x}-1\sim{x\ln{a}} ax−1∼xlna
- log a ( 1 + x ) ∼ 1 ln a x \log_a(1+x)\sim \frac{1}{\ln{a}}x loga(1+x)∼lna1x
-
以下3组函数各组内函数互为反函数
- sin x , arcsin x \sin{x},\arcsin{x} sinx,arcsinx,
- tan x , arctan x \tan{x},\arctan{x} tanx,arctanx
- ln ( x + 1 ) , e x − 1 \ln{(x+1)},e^{x}-1 ln(x+1),ex−1
- a x − 1 a^{x}-1 ax−1, log a ( 1 + x ) \log_{a}{(1+x)} loga(1+x)
-
末尾减1的两个等价无穷小
-
( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}-1\sim{\alpha{x}} (1+x)α−1∼αx;(幂型)
-
a x − 1 ∼ x ln a a^{x}-1\sim{x\ln{a}} ax−1∼xlna;(指数型)
-
派生和拓展
- 将上述公式中的 x x x替换为无穷小 α ( x ) \alpha(x) α(x)仍然成立
- cos x \cos{x} cosx= 1 + ( cos x − 1 ) 1+(\cos{x}-1) 1+(cosx−1), cos x − 1 → 0 ( x → 0 ) \cos{x}-1\to{0}(x\to{0}) cosx−1→0(x→0),从而 ln ( cos x ) \ln(\cos{x}) ln(cosx)= ln ( 1 + ( cos x − 1 ) ) ∼ cos x − 1 \ln(1+(\cos{x}-1))\sim{\cos{x}-1} ln(1+(cosx−1))∼cosx−1
幂指函数中常用等价无穷小
- 等价无穷小
ln
(
1
+
x
)
∼
x
(
x
→
0
)
\ln{(1+x)}\sim{x}(x\to{0})
ln(1+x)∼x(x→0)的应用
- n ln ( 1 + 1 n ) = ln ( 1 + 1 n ) 1 n → 1 ( n → ∞ ) n\ln(1+\frac{1}{n})=\frac{\ln(1+\frac{1}{n})}{\frac{1}{n}}\to 1(n\to{\infin}) nln(1+n1)=n1ln(1+n1)→1(n→∞)
- 种形式是: 1 n ln ( 1 + n ) → 1 ( n → 0 ) \frac{1}{n}\ln{(1+n)}\to{1}(n\to{0}) n1ln(1+n)→1(n→0)
小结
- 通常我们像把非多项式函数转换为多项式函数( ∑ i = 0 n a i x i \sum_{i=0}^{n}a_{i}x^{i} ∑i=0naixi,这里通常时 a 0 x n a_0x^{n} a0xn型的),从而达到分子和分母的函数类别的统一以及在约分时提供方便
- 指数,对数,三角函数,反三角函数全部转为多项式函数
其他精度更高的等价无穷小
- x − sin x ∼ 1 6 x 3 x-\sin{x}\sim{\frac{1}{6}x^3} x−sinx∼61x3
- arcsin x − x ∼ 1 6 x 3 \arcsin{x}-x\sim\frac{1}{6}x^3 arcsinx−x∼61x3
- x − arctan x ∼ 1 3 x 3 x-\arctan{x}\sim{\frac{1}{3}x^3} x−arctanx∼31x3
- tan x − x ∼ 1 3 x 3 \tan{x}-x\sim{\frac{1}{3}x^3} tanx−x∼31x3
- x − ln ( 1 + x ) ∼ 1 2 x 2 x-\ln(1+x)\sim{\frac{1}{2}x^2} x−ln(1+x)∼21x2
-
连写: x − sin x ∼ arcsin x − x ∼ 1 6 x 3 x-\sin{x}\sim\arcsin{x}-x\sim\frac{1}{6}x^3 x−sinx∼arcsinx−x∼61x3
- x − arctan x ∼ tan x − x ∼ 1 3 x 3 x-\arctan{x}\sim\tan{x}-x\sim{\frac{1}{3}x^3} x−arctanx∼tanx−x∼31x3
- 都可以通过泰勒公式推导,例如式1,式5, arcsin x , arctan x , tan x \arcsin{x},\arctan{x},\tan{x} arcsinx,arctanx,tanx的展开式相对用的少,但也建议记忆前2至三项,比等价无穷小更加灵活,利用它们,也可以直接推出上述式2,3,4
-
证明
- 从验证和证明的角度(而不论推导由来),可以洛必达法则验证正确性
- 例如 lim x → 0 x − sin x x 3 \lim\limits_{x\to{0}}\frac{x-\sin{x}}{{x^3}} x→0limx3x−sinx= lim x → 0 1 − cos x 3 x 2 \lim\limits_{x\to{0}}\frac{1-\cos{x}}{3x^2} x→0lim3x21−cosx= lim x → 0 sin x 6 x \lim\limits_{x\to{0}}\frac{\sin{x}}{6x} x→0lim6xsinx= 1 6 \frac{1}{6} 61,所以 lim x → 0 x − sin x 6 x 3 = 1 \lim\limits_{x\to{0}}\frac{x-\sin{x}}{6{x^3}}=1 x→0lim6x3x−sinx=1,即 x − sin x ∼ 1 6 x 3 x-\sin{x}\sim{\frac{1}{6}x^3} x−sinx∼61x3
- 令 t = sin x t=\sin{x} t=sinx,则 x = arcsin t x=\arcsin{t} x=arcsint,代入式1,得 arcsin t − t ∼ 1 6 arcsin 3 t ∼ 1 6 t 3 \arcsin{t}-t\sim{\frac{1}{6}\arcsin^3{t}}\sim\frac{1}{6}t^3 arcsint−t∼61arcsin3t∼61t3,即式3成立
- 类似得可证式2,再推出式4
记忆技巧
- 有界性
- cos x ⩽ 1 \cos{x}\leqslant{1} cosx⩽1, sin x ⩽ 1 \sin{x}\leqslant{1} sinx⩽1
- 从而容易分清楚 1 − cos x ∼ 1 2 x 2 1-\cos{x}\sim{\frac{1}{2}x^2} 1−cosx∼21x2 ; cos x − 1 ∼ − 1 2 x 2 \cos{x}-1\sim{-\frac{1}{2}x^2} cosx−1∼−21x2
- 不等式放缩
0
+
0^{+}
0+:
- ln ( 1 + x ) < x \ln(1+x)<x ln(1+x)<x
- e x − 1 ⩾ x e^x-1\geqslant{x} ex−1⩾x
- x 2 < x 1 + x < ln ( 1 + x ) < x \frac{x}{2}<\frac{x}{1+x}<\ln{(1+x)}<x 2x<1+xx<ln(1+x)<x
- sin x < x < tan x \sin{x}<x<\tan{x} sinx<x<tanx
- arctan x < x < arcsin x ( x ∈ ( 0 , 1 ] ) \arctan{x}<{x}<{\arcsin{x}}(x\in(0,1]) arctanx<x<arcsinx(x∈(0,1])
- 根据这些大小关系(联想它们的图形曲线),可以判断 sin x − x \sin{x}-x sinx−x或 x − sin x x-\sin{x} x−sinx结果是正还是负
- 从记忆的角度,尤其是第1,2个,容易得到其他几个
- 对于等价无穷小式(1),(2), [ x − sin x ] ∼ [ arcsin x − x ] ∼ 1 6 x 3 [x-\sin{x}]\sim[\arcsin{x}-x]\sim\frac{1}{6}x^3 [x−sinx]∼[arcsinx−x]∼61x3,即对 x , sin x x,\sin{x} x,sinx分别取反正弦函数,得到 arcsin x , x \arcsin{x},x arcsinx,x它们的差也是和 1 6 x 3 \frac{1}{6}x^3 61x3等价无穷小
- 对于(3,4), [ x − tan x ] ∼ [ arctan x − x ] ∼ − 1 3 x 3 [x-\tan{x}]\sim[\arctan{x}-x]\sim-\frac{1}{3}x^3 [x−tanx]∼[arctanx−x]∼−31x3,即对 x , tan x x,\tan{x} x,tanx分别取反正弦函数,得到 arcsin x , x \arcsin{x},x arcsinx,x它们的差也是和 − 1 3 x 3 -\frac{1}{3}x^3 −31x3等价无穷小
- 例: lim x → 0 arcsin x − arctan x sin x − tan x \lim\limits_{x\to{0}}\frac{\arcsin{x}-\arctan{x}}{\sin{x}-\tan{x}} x→0limsinx−tanxarcsinx−arctanx= lim x → 0 ( arcsin x − x ) − ( arctan x − x ) sin x − tan x \lim\limits_{x\to{0}}\frac{(\arcsin{x}-x)-(\arctan{x}-x)}{\sin{x}-\tan{x}} x→0limsinx−tanx(arcsinx−x)−(arctanx−x)= lim x → x 1 6 x 3 + 1 3 x 3 tan x ( cos x − 1 ) \lim\limits_{x\to{x}}\frac{\frac{1}{6}x^3+\frac{1}{3}{x^3}}{\tan{x}(\cos{x}-1)} x→xlimtanx(cosx−1)61x3+31x3= lim x → 0 1 2 x 3 x ( − 1 2 x 2 ) \lim\limits_{x\to{0}}\frac{\frac{1}{2}{x^3}}{x(-\frac{1}{2}x^2)} x→0limx(−21x2)21x3= − 1 -1 −1
常用的等价无穷小和推导👺
-
sin ( x ) ∼ x \sin(x)\sim x sin(x)∼x
- lim x → 0 sin ( x ) x = 1 \lim\limits_{x\to 0}{\frac{\sin(x)}{x}}=1 x→0limxsin(x)=1;第一重要极限
-
tan ( x ) ∼ x \tan(x)\sim x tan(x)∼x
- lim x → 0 sin x x cos x \lim\limits_{x\to 0}{\frac{\sin x}{x\cos x}} x→0limxcosxsinx= lim x → 0 sin x x 1 cos x \lim\limits_{x\to 0}{\frac{\sin x}{x}\frac{1}{\cos x}} x→0limxsinxcosx1= 1 ⋅ lim x → 0 ( 1 cos x ) 1\cdot\lim\limits_{x\to 0}{(\frac{1}{\cos x})} 1⋅x→0lim(cosx1)= lim x → 0 1 lim x → 0 cos ( x ) = 1 \frac{\lim\limits_{x\to 0}{1}}{\lim\limits_{x\to 0}\cos(x)}=1 x→0limcos(x)x→0lim1=1
-
arcsin ( x ) ∼ x \arcsin(x)\sim x arcsin(x)∼x
- 令 t = arcsin ( x ) , x = sin ( t ) t=\arcsin(x),x=\sin(t) t=arcsin(x),x=sin(t), t → 0 ( x → 0 ) t\to 0(x\to 0) t→0(x→0), lim x → 0 arcsin ( x ) x \lim\limits_{x\to{0}}{\frac{\arcsin(x)}{x}} x→0limxarcsin(x)= lim t → 0 t sin ( t ) = 1 \lim\limits_{t\to{0}}{\frac{t}{\sin(t)}}=1 t→0limsin(t)t=1
-
arctan ( x ) ∼ x \arctan(x)\sim x arctan(x)∼x
- 令 t = arctan ( x ) t=\arctan(x) t=arctan(x), x = tan ( t ) x=\tan(t) x=tan(t); t → 0 ( x → 0 ) t\to{0}(x\to{0}) t→0(x→0)
- lim x → 0 arctan ( x ) x \lim\limits_{x\to 0}{\frac{\arctan(x)}{x}} x→0limxarctan(x)= lim t → 0 t tan ( t ) = 1 \lim\limits_{t\to 0}{\frac{t}{\tan(t)}}=1 t→0limtan(t)t=1
-
ln ( 1 + x ) ∼ x \ln(1+x)\sim x ln(1+x)∼x
- 利用对数性质和第二重要极限证明
-
lim
x
→
0
ln
(
1
+
x
)
x
\lim\limits_{x\to 0}{\frac{\ln(1+x)}{x}}
x→0limxln(1+x)=
lim
x
→
0
1
x
ln
(
1
+
x
)
\lim\limits_{x\to 0}{\frac{1}{x}{\ln(1+x)}}
x→0limx1ln(1+x)=
lim
x
→
0
ln
[
(
1
+
x
)
1
x
]
\lim\limits_{x\to 0}{\ln[(1+x)^\frac{1}{x}]}
x→0limln[(1+x)x1]
- = lim u → e ln u = ln e = 1 \lim\limits_{u\to{e}}\ln{u}=\ln{e}=1 u→elimlnu=lne=1
-
lim
x
→
0
ln
(
1
+
x
)
x
\lim\limits_{x\to 0}{\frac{\ln(1+x)}{x}}
x→0limxln(1+x)=
lim
x
→
0
1
x
ln
(
1
+
x
)
\lim\limits_{x\to 0}{\frac{1}{x}{\ln(1+x)}}
x→0limx1ln(1+x)=
lim
x
→
0
ln
[
(
1
+
x
)
1
x
]
\lim\limits_{x\to 0}{\ln[(1+x)^\frac{1}{x}]}
x→0limln[(1+x)x1]
- 利用对数性质和第二重要极限证明
-
log a ( 1 + x ) ∼ 1 ln ( a ) x \log_a(1+x)\sim \frac{1}{\ln(a)}x loga(1+x)∼ln(a)1x
-
根据换底公式 log a e = ln ( e ) ln ( a ) = 1 ln ( a ) \log_{a}{e}=\frac{\ln{(e)}}{\ln(a)}=\frac{1}{\ln(a)} logae=ln(a)ln(e)=ln(a)1
-
lim x → 0 log a ( 1 + x ) x \lim\limits_{x\to{0}}{\frac{\log_a(1+x)}{x}} x→0limxloga(1+x)= lim x → 0 1 x log a ( 1 + x ) \lim\limits_{x\to 0}\frac{1}{x}{\log_a{(1+x)}} x→0limx1loga(1+x)= lim x → 0 log a ( ( 1 + x ) 1 x ) = log a ( e ) = 1 ln ( a ) \lim\limits_{x\to{0}}\log_a((1+x)^{\frac{1}{x}})=\log_a(e)=\frac{1}{\ln(a)} x→0limloga((1+x)x1)=loga(e)=ln(a)1
-
所以: log a ( 1 + x ) ∼ 1 ln ( a ) x \log_a(1+x)\sim \frac{1}{\ln(a)}x loga(1+x)∼ln(a)1x
-
-
e x − 1 ∼ x e^x-1\sim x ex−1∼x
-
换元法:令 t = e x − 1 t=e^x-1 t=ex−1;则 x = ln ( t + 1 ) x=\ln(t+1) x=ln(t+1)
-
t = ( e x − 1 ) → 0 ( x → 0 ) t=(e^x-1)\to 0(x\to 0) t=(ex−1)→0(x→0); lim x → 0 e x − 1 x \lim\limits_{x\to{0}}{\frac{e^x-1}{x}} x→0limxex−1= lim t → 0 t ln ( t + 1 ) \lim\limits_{t\to{0}}{\frac{t}{\ln{(t+1)}}} t→0limln(t+1)t= lim t → 0 t t \lim\limits_{t\to{0}}\frac{t}{t} t→0limtt=1
-
-
( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a (ax−1)∼xlna
-
方法1:
- a x − 1 a^{x}-1 ax−1= e x ln a − 1 e^{x\ln{a}}-1 exlna−1 ∼ \sim ∼ x ln a x\ln{a} xlna
-
方法2:
-
令 t = a x − 1 t=a^x-1 t=ax−1; t → 0 ( x → 0 ) t\to 0(x\to 0) t→0(x→0); x = log a ( t + 1 ) x=\log_a(t+1) x=loga(t+1)
-
应用: log a ( 1 + t ) ∼ 1 ln ( a ) t \log_a(1+t)\sim \frac{1}{\ln(a)}t loga(1+t)∼ln(a)1t代换: S = lim t → 0 t log a ( t + 1 ) S=\lim\limits_{t\to{0}}{\frac{t}{\log_a(t+1)}} S=t→0limloga(t+1)t= lim t → 0 t 1 ln a t \lim\limits_{t\to 0}{\frac{t}{\frac{1}{\ln a}t}} t→0limlna1tt= ln a \ln a lna
-
-
-
1 − cos ( x ) ∼ 1 2 x 2 1-\cos(x)\sim \frac{1}{2}x^2 1−cos(x)∼21x2
- lim x → 0 1 − cos ( x ) x 2 \lim\limits_{x\to 0}{\frac{1-\cos(x)}{x^2}} x→0limx21−cos(x)= lim x → 0 2 sin 2 ( x 2 ) x 2 \lim\limits_{x\to{0}}{\frac{2\sin^{2}{(\frac{x}{2})}}{x^2}} x→0limx22sin2(2x)= lim x → 0 2 ( x 2 ) 2 x 2 \lim\limits_{x\to 0}\frac{2(\frac{x}{2})^2}{x^2} x→0limx22(2x)2= 1 2 \frac{1}{2} 21
-
( 1 + x ) a − 1 ∼ a x (1+x)^a-1\sim ax (1+x)a−1∼ax
-
方法1:利用换底公式,复合函数极限运算法则和已知的几组等价无穷小
-
( 1 + x ) a (1+x)^a (1+x)a= e ln ( 1 + x ) a e^{\ln{(1+x)^a}} eln(1+x)a= e ln ( 1 + x ) a e^{\ln{(1+x)^a}} eln(1+x)a= e a ⋅ ln ( 1 + x ) e^{a\cdot \ln{(1+x)}} ea⋅ln(1+x),从而需要被证明的命题变为: e a ⋅ ln ( 1 + x ) − 1 ∼ a x e^{a\cdot \ln{(1+x)}}-1\sim ax ea⋅ln(1+x)−1∼ax
(1)
-
由 e x − 1 ∼ x e^x-1\sim x ex−1∼x得 e a ⋅ ln ( x + 1 ) − 1 ∼ a ⋅ ln ( x + 1 ) e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) ea⋅ln(x+1)−1∼a⋅ln(x+1)
(2)
-
再由 ln ( x + 1 ) ∼ x \ln(x+1)\sim{x} ln(x+1)∼x,得 a ln ( x + 1 ) ∼ a x a\ln(x+1)\sim{ax} aln(x+1)∼ax
(3)
,代入(2)
-
从而(1)成立,即命题成立
-
-
方法2:用代换法和 ln ( 1 + x ) ∼ x \ln(1+x)\sim{x} ln(1+x)∼x推导
- 令 t = ( 1 + x ) a − 1 ; 即 , ( 1 + x ) a = t + 1 t=(1+x)^a-1;即,(1+x)^a=t+1 t=(1+x)a−1;即,(1+x)a=t+1,则 ln ( 1 + x ) a = ln ( t + 1 ) \ln (1+x)^a=\ln (t+1) ln(1+x)a=ln(t+1)
- lim x → 0 ( 1 + x ) a − 1 x ln ( 1 + x ) a ln ( 1 + x ) a \lim\limits_{x\to 0}{\frac{(1+x)^a-1}{x}\frac{\ln (1+x)^a}{\ln(1+x)^a}} x→0limx(1+x)a−1ln(1+x)aln(1+x)a= lim x → 0 ( 1 + x ) a − 1 x a ⋅ ln ( 1 + x ) ln ( 1 + x ) a \lim\limits_{x\to 0}{\frac{(1+x)^a-1}{x}\frac{a\cdot \ln(1+x)}{\ln (1+x)^a}} x→0limx(1+x)a−1ln(1+x)aa⋅ln(1+x)= lim x → 0 ( 1 + x ) a − 1 ln ( 1 + x ) a a ⋅ ln ( 1 + x ) x \lim\limits_{x\to 0}{\frac{(1+x)^a-1}{\ln(1+x)^a}\frac{a\cdot \ln (1+x)}{x}} x→0limln(1+x)a(1+x)a−1xa⋅ln(1+x)
- = lim x → 0 ( 1 + x ) a − 1 ln ( 1 + x ) a ⋅ \lim\limits_{x\to{0}}\frac{(1+x)^a-1}{\ln(1+x)^a}\cdot x→0limln(1+x)a(1+x)a−1⋅ lim x → 0 a ⋅ ln ( 1 + x ) x \lim\limits_{x\to 0}{\frac{a\cdot \ln(1+x)}{x}} x→0limxa⋅ln(1+x)
- = = = lim t → 0 t ln ( t + 1 ) \lim\limits_{t\to 0}{\frac{t}{\ln(t+1)}} t→0limln(t+1)t ⋅ \cdot ⋅ lim x → 0 a ⋅ ln ( 1 + x ) x \lim\limits_{x\to 0}{\frac{a\cdot \ln(1+x)}{x}} x→0limxa⋅ln(1+x)= 1 × a = a 1\times a=a 1×a=a
-
1 + x − 1 − x ∼ x \sqrt{1+x}-\sqrt{1-x}\sim{x} 1+x−1−x∼x
- 方法1:泰勒展开 1 + x \sqrt{1+x} 1+x= 1 + 1 2 x + o ( x ) 1+\frac{1}{2}x+o(x) 1+21x+o(x); 1 − x \sqrt{1-x} 1−x= 1 − 1 2 x + o ( x ) 1-\frac{1}{2}x+o(x) 1−21x+o(x),从而 1 + x − 1 − x ∼ x \sqrt{1+x}-\sqrt{1-x}\sim{x} 1+x−1−x∼x= x + o ( x ) ∼ x x+o(x)\sim{x} x+o(x)∼x
- 方法2: ( 1 + x − 1 ) − ( 1 − x − 1 ) (\sqrt{1+x}-1)-(\sqrt{1-x}-1) (1+x−1)−(1−x−1),两个括号内分别和 1 2 x , − 1 2 x \frac{1}{2}x,-\frac{1}{2}x 21x,−21x,并且 1 2 x , − 1 2 x \frac{1}{2}x,-\frac{1}{2}x 21x,−21x不等价,因此 ( 1 + x − 1 ) − ( 1 − x − 1 ) ∼ 1 2 x − ( − 1 2 x ) = x (\sqrt{1+x}-1)-(\sqrt{1-x}-1) \sim {\frac{1}{2}x-(-\frac{1}{2}x)}=x (1+x−1)−(1−x−1)∼21x−(−21x)=x
例
-
例:设 cos x − 1 = x sin α ( x ) \cos{x}-1=x\sin{\alpha(x)} cosx−1=xsinα(x)
(1)
,其中 ∣ α ( x ) ∣ < π 2 |\alpha(x)|<\frac{\pi}{2} ∣α(x)∣<2π(2)
,则当 x → 0 x\to{0} x→0时, lim x → 0 α ( x ) x \lim\limits_{x\to{0}}\frac{\alpha{(x)}}{x} x→0limxα(x) -
方法1:纯等价无穷小法及其推广用法求解
-
x
→
0
x\to{0}
x→0时:
- cos x − 1 ∼ x sin α ( x ) \cos{x}-1\sim{x\sin\alpha{(x)}} cosx−1∼xsinα(x),
- 因为 cos x − 1 ∼ − 1 2 x 2 \cos{x}-1\sim{-\frac{1}{2}x^2} cosx−1∼−21x2,所以 − 1 2 x 2 ∼ x sin α ( x ) -\frac{1}{2}x^2\sim{x\sin\alpha(x)} −21x2∼xsinα(x),即 − 1 2 x ∼ sin α ( x ) -\frac{1}{2}x\sim{\sin\alpha(x)} −21x∼sinα(x)
- 因为 arcsin x ∼ x \arcsin{x}\sim{x} arcsinx∼x又由于(2),得 arcsin ( − 1 2 x ) ∼ α ( x ) \arcsin{(-\frac{1}{2}x)}\sim{\alpha{(x)}} arcsin(−21x)∼α(x)
- 又 arcsin ( − 1 2 x ) ∼ − 1 2 x \arcsin{(-\frac{1}{2}x)}\sim{-\frac{1}{2}x} arcsin(−21x)∼−21x,从而 α ( x ) ∼ − 1 2 \alpha(x)\sim{-\frac{1}{2}} α(x)∼−21
-
x
→
0
x\to{0}
x→0时:
-
方法2:构造合适的函数求极限
-
题目要求探究 α ( x ) \alpha(x) α(x)和 x x x的无穷小关系,这里先尝试探究 sin α ( x ) \sin{\alpha(x)} sinα(x)和 x x x的无穷小关系,再由等价无穷小替换 sin x ∼ x \sin{x}\sim{x} sinx∼x的推广应用: sin α ( x ) ∼ α ( x ) \sin\alpha(x)\sim{\alpha(x)} sinα(x)∼α(x)得 α ( x ) \alpha(x) α(x)和 x x x的无穷小关系
-
令 f ( x ) = sin α ( x ) x f(x)=\frac{\sin{\alpha(x)}}{x} f(x)=xsinα(x),由(1),得 f ( x ) = cos x − 1 x 2 f(x)=\frac{\cos{x}-1}{x^2} f(x)=x2cosx−1
-
lim x → 0 f ( x ) \lim\limits_{x\to{0}}{f(x)} x→0limf(x)= lim x → 0 cos x − 1 x 2 \lim\limits_{x\to{0}}\frac{\cos{x-1}}{x^2} x→0limx2cosx−1= lim x → 0 − 1 2 x 2 x 2 \lim\limits_{x\to{0}}\frac{-\frac{1}{2}x^2}{x^2} x→0limx2−21x2= − 1 2 -\frac{1}{2} −21,说明 sin α ( x ) \sin\alpha(x) sinα(x)和 x x x是同阶无穷小
-
lim x → 0 sin α ( x ) = 0 \lim\limits_{x\to{0}}\sin\alpha(x)=0 x→0limsinα(x)=0,说明 x → 0 x\to{0} x→0时 α ( x ) → 2 k π \alpha(x)\to{2k\pi} α(x)→2kπ, k ∈ Z k\in\mathbb{Z} k∈Z,由(2), α ( x ) → 0 \alpha(x)\to{0} α(x)→0
-
lim x → 0 f ( x ) \lim\limits_{x\to{0}}f(x) x→0limf(x)= lim x → 0 α ( x ) x \lim\limits_{x\to{0}}\frac{\alpha{(x)}}{x} x→0limxα(x)= − 1 2 -\frac{1}{2} −21
-
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2021-06-28 linux_cp