AM@高阶导数求导法则和常用的初等函数的高阶导数公式
文章目录
abstract
- 高阶导数求导法则
- 常用的初等函数的高阶导数
- 这部分内容为泰勒公式作铺垫,特别是幂型高阶导数
高阶导数
二阶导数
- 如果函数的导数 f ′ ( x ) f'(x)\, f′(x)在 x x\, x处可导,则称 [ f ′ ( x ) ] ′ [f'(x)]'\, [f′(x)]′为 x x\, x的二阶导数。记做: f ′ ′ ( x ) f''(x)\, f′′(x), y ′ ′ y''\, y′′, d 2 y d x 2 \frac{{\rm{d}}^2 y}{{\rm{d}}x^2} dx2d2y或 d 2 f ( x ) d x 2 \frac{{\rm{d}}^2 f(x)}{{\rm{d}}x^2} dx2d2f(x)
- 二阶导数可用于求解函数凹凸性问题。 f ′ ′ ( x ) > 0 {\displaystyle f''(x)>0} f′′(x)>0函数在x上凹。 f ′ ′ ( x ) < 0 {\displaystyle f''(x)<0} f′′(x)<0函数在x下凹。
高阶导数
- 二阶导数的导数称为三阶导数,记做 f ′ ′ ′ ( x ) f'''(x)\, f′′′(x), y ′ ′ ′ y'''\, y′′′, d 3 y d x 3 \frac{{\rm{d}}^3 y}{{\rm{d}}x^3} dx3d3y或 d 3 f ( x ) d x 3 \frac{{\rm{d}}^3 f(x)}{{\rm{d}}x^3} dx3d3f(x)
- 三阶导数的导数称为四阶导数,记做 f ( 4 ) ( x ) f^{(4)}(x)\, f(4)(x), y ( 4 ) y^{(4)}\, y(4), d 4 y d x 4 \frac{{\rm{d}}^4 y}{{\rm{d}}x^4} dx4d4y或 d 4 f ( x ) d x 4 \frac{{\rm{d}}^4 f(x)}{{\rm{d}}x^4} dx4d4f(x)
- 一般的 f ( x ) f(x)\, f(x)的 n − 1 n-1\, n−1阶导数的导数称为 f ( x ) f(x)\, f(x)的 n n\, n阶导数,记为 f ( n ) ( x ) f^{(n)}(x)\, f(n)(x), y ( n ) y^{(n)}\, y(n), d n y d x n \frac{{\rm{d}}^n y}{{\rm{d}}x^n} dxndny或 d n f ( x ) d x n \frac{{\rm{d}}^n f(x)}{{\rm{d}}x^n} dxndnf(x)
高阶导数的求法
一般来说,高阶导数的计算和导数一样,可以按照定义逐步求出。同时,高阶导数也有求导法则:
-
d n d x n ( u ± v ) = d n d x n u ± d n d x n v \frac{{\rm{d}}^n}{{\rm{d}}x^n}(u\pm v)=\frac{{\rm{d}}^n}{{\rm{d}}x^n}u\pm \frac{{\rm{d}}^n}{{\rm{d}}x^n}v dxndn(u±v)=dxndnu±dxndnv
-
d n d x n ( C u ) = C d n d x n u \frac{{\rm{d}}^n}{{\rm{d}}x^n} (Cu)=C\frac{{\rm{d}}^n}{{\rm{d}}x^n}u dxndn(Cu)=Cdxndnu
-
d n d x n ( u ⋅ v ) = ∑ k = 0 n C k n d n − k d x n − k u d k d x k v \frac{{\rm{d}}^n}{{\rm{d}}x^n}(u\cdot v)=\sum_{k=0}^n C_k^n\frac{{\rm{d}}^{n-k}}{{\rm{d}}x^{n-k}}u\frac{{\rm{d}}^k}{{\rm{d}}x^k}v dxndn(u⋅v)=∑k=0nCkndxn−kdn−kudxkdkv(莱布尼兹公式)
常用高阶导数公式👺
- d n d x n x α = x α − n ∏ k = 0 n − 1 ( α − k ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}x^{\alpha}=x^{\alpha-n}\prod_{k=0}^{n-1}(\alpha-k) dxndnxα=xα−n∏k=0n−1(α−k)
- d n d x n 1 x = ( − 1 ) n n ! x n + 1 \frac{{\rm{d}}^n}{{\rm{d}}x^n}\frac{1}{x}=(-1)^{n}\frac{n!}{x^{n+1}} dxndnx1=(−1)nxn+1n!
- d n d x n ln x = ( − 1 ) n − 1 ( n − 1 ) ! x n \frac{{\rm{d}}^n}{{\rm{d}}x^n}\ln x=(-1)^{n-1}\frac{(n-1)!}{x^n} dxndnlnx=(−1)n−1xn(n−1)!; d n d x n ln ( 1 + x ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}\ln(1+x) dxndnln(1+x)= ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n (-1)^{n-1}\frac{(n-1)!}{(1+x)^{n}} (−1)n−1(1+x)n(n−1)!
- d n d x n e x = e x \frac{{\rm{d}}^n}{{\rm{d}}x^n}e^x=e^x dxndnex=ex
- d n d x n a x = a x ⋅ ln n a \frac{{\rm{d}}^n}{{\rm{d}}x^n} a^x=a^x \cdot \ln^n a dxndnax=ax⋅lnna ( a > 0 ) (a>0) (a>0)
- d n d x n sin ( k x + b ) = k n sin ( k x + b + n π 2 ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}\sin \left(kx+b\right)=k^n\sin \left(kx+b+\frac{n\pi}{2}\right) dxndnsin(kx+b)=knsin(kx+b+2nπ)
- d n d x n cos ( k x + b ) = k n cos ( k x + b + n π 2 ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}\cos \left(kx+b\right)=k^n\cos \left(kx+b+\frac{n\pi}{2}\right) dxndncos(kx+b)=kncos(kx+b+2nπ)
函数和一次函数复合后的导数👺
-
根据复合函数求导法则,有 ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)
-
这就是说,如果求得 f ( n ) ( x ) f^{(n)}(x) f(n)(x),则可以直接得到 ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)
- 如果一次式用
k
x
+
b
kx+b
kx+b表示,公式为
(
f
(
k
x
+
b
)
)
(
n
)
(f(kx+b))^{(n)}
(f(kx+b))(n)=
k
n
f
(
n
)
(
k
x
+
b
)
k^{n}f^{(n)}(kx+b)
knf(n)(kx+b)
(1)
- 如果一次式用
k
x
+
b
kx+b
kx+b表示,公式为
(
f
(
k
x
+
b
)
)
(
n
)
(f(kx+b))^{(n)}
(f(kx+b))(n)=
k
n
f
(
n
)
(
k
x
+
b
)
k^{n}f^{(n)}(kx+b)
knf(n)(kx+b)
-
n n n ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n) 0 f ( a x + b ) f(ax+b) f(ax+b) 1 1 1 f ′ ( a x + b ) ⋅ a f'(ax+b)\cdot{a} f′(ax+b)⋅a 2 2 2 f ′ ′ ( a x + b ) ⋅ a 2 f''(ax+b)\cdot{a^2} f′′(ax+b)⋅a2 ⋯ \cdots ⋯ ⋯ \cdots ⋯ n n n f ( n ) ( a x + b ) ⋅ a n f^{(n)}(ax+b)\cdot{a^{n}} f(n)(ax+b)⋅an= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)
指数型
-
n n n ( a x ) ( n ) (a^{x})^{(n)} (ax)(n) 1 a x ln a a^{x}\ln{a} axlna 2 a x ln 2 a a^{x}\ln^{2}{a} axln2a 3 a x ln 3 a a^{x}\ln^{3}{a} axln3a ⋯ \cdots ⋯ ⋯ \cdots ⋯ n a x ln n a a^{x}\ln^{n}{a} axlnna -
由公式(1), ( a k x ) ( n ) (a^{kx})^{(n)} (akx)(n)= k n a k x ln n a k^{n}a^{kx}\ln^{n}{a} knakxlnna
-
当 a = e a=e a=e时, ( e x ) ( n ) (e^{x})^{(n)} (ex)(n)= e x e^{x} ex; ( e k x ) ( n ) (e^{kx})^{(n)} (ekx)(n)= k n e k x k^{n}e^{kx} knekx
三角型
正弦型函数
-
f
(
x
)
=
sin
(
x
)
f(x)=\sin(x)
f(x)=sin(x)
-
(
sin
x
)
′
(\sin{x})'
(sinx)′=
cos
x
\cos{x}
cosx=
sin
(
x
+
π
2
)
\sin(x+\frac{\pi}{2})
sin(x+2π)
(0)
-
(
sin
x
)
′
(\sin{x})'
(sinx)′=
cos
x
\cos{x}
cosx=
sin
(
x
+
π
2
)
\sin(x+\frac{\pi}{2})
sin(x+2π)
- 对式(0)两边求导,得
(
sin
x
)
′
′
(\sin{x})''
(sinx)′′=
sin
(
(
x
+
π
2
)
+
π
2
)
\sin((x+\frac{\pi}{2})+\frac{\pi}{2})
sin((x+2π)+2π)=
sin
(
x
+
2
⋅
π
2
)
\sin(x+2\cdot\frac{\pi}{2})
sin(x+2⋅2π)
- 类似的, ( sin x ) ( 3 ) (\sin{x})^{(3)} (sinx)(3)= sin ( x + 2 ⋅ π 2 + π 2 ) \sin(x+2\cdot\frac{\pi}{2}+\frac{\pi}{2}) sin(x+2⋅2π+2π)= sin ( x + 3 ⋅ π 2 ) \sin(x+3\cdot\frac{\pi}{2}) sin(x+3⋅2π)
- ( sin x ) ( n ) (\sin{x})^{(n)} (sinx)(n)= sin ( x + n ⋅ π 2 ) \sin(x+n\cdot{\frac{\pi}{2}}) sin(x+n⋅2π)
n n n | f ( n ) ( x ) f^{(n)}(x) f(n)(x) | f n ( x ) f^{n}(x) fn(x)统一为 sin ( x + n π 2 ) \sin(x+n\frac{\pi}{2}) sin(x+n2π)形式 |
---|---|---|
1 | cos x \cos x cosx | sin ( x + π 2 ) \sin{(x+\frac{\pi}{2})} sin(x+2π) |
2 | − sin x -\sin x −sinx | sin ( x + 2 ⋅ π 2 ) \sin{(x+2\cdot\frac{\pi}{2})} sin(x+2⋅2π) |
3 | − cos x -\cos x −cosx | sin ( x + 3 ⋅ π 2 ) \sin(x+3\cdot\frac{\pi}{2}) sin(x+3⋅2π) |
4 | sin x \sin x sinx | sin ( x + 4 ⋅ π 2 ) \sin(x+4\cdot\frac{\pi}{2}) sin(x+4⋅2π) |
… | … | ⋯ \cdots ⋯ |
n n n | sin ( x + n ⋅ π 2 ) \sin(x+n\cdot\frac{\pi}{2}) sin(x+n⋅2π) |
- 从表格第2列可以看出,第4次求导的时候已经回到初始函数 f ( x ) = sin x f(x)=\sin x f(x)=sinx;
- 但第2列的结果形式上不同一,不便表表示,而采用第3列结果
推广
- 求 sin ( k x ) \sin(kx) sin(kx), sin ( k x + b ) \sin(kx+b) sin(kx+b)的高阶导数
- 方法1
- 根据函数与一次函数复合导数公式以及
(
sin
x
)
(
n
)
(\sin{x})^{(n)}
(sinx)(n)=
sin
(
x
+
n
⋅
π
2
)
\sin(x+n\cdot{\frac{\pi}{2}})
sin(x+n⋅2π)直接得到:
- ( sin a x ) ( n ) (\sin{ax})^{(n)} (sinax)(n)= a n sin ( a x + n π 2 ) a^{n}\sin{(ax+n\frac{\pi}{2})} ansin(ax+n2π);
- ( sin a x + b ) ( n ) (\sin{ax+b})^{(n)} (sinax+b)(n)= a n sin ( a x + b + n π 2 ) a^{n}\sin(ax+b+n\frac{\pi}{2}) ansin(ax+b+n2π)
- 根据函数与一次函数复合导数公式以及
(
sin
x
)
(
n
)
(\sin{x})^{(n)}
(sinx)(n)=
sin
(
x
+
n
⋅
π
2
)
\sin(x+n\cdot{\frac{\pi}{2}})
sin(x+n⋅2π)直接得到:
- 方法2
- 利用公式 cos ( ϕ ( x ) ) = sin ( π 2 + ϕ ( x ) ) \cos(\phi(x))=\sin(\frac{\pi}{2}+\phi(x)) cos(ϕ(x))=sin(2π+ϕ(x)),
- 反复套用 cos ϕ ( x ) = sin ( ϕ ( x ) + π 2 ) \cos\phi(x)=\sin(\phi(x)+\frac{\pi}{2}) cosϕ(x)=sin(ϕ(x)+2π)
-
对于
ϕ
(
x
)
=
a
x
,
s
i
n
′
(
ϕ
(
x
)
)
对于\phi(x)=ax,sin'(\phi(x))
对于ϕ(x)=ax,sin′(ϕ(x))=
c
o
s
(
ϕ
(
x
)
)
ϕ
′
(
x
)
cos(\phi(x))\phi'(x)
cos(ϕ(x))ϕ′(x)=
s
i
n
(
ϕ
(
x
)
+
π
2
)
⋅
ϕ
′
(
x
)
sin(\phi(x)+\frac{\pi}{2})\cdot\phi'(x)
sin(ϕ(x)+2π)⋅ϕ′(x)
-
(
sin
a
x
)
′
(\sin{ax})'
(sinax)′=
sin
(
a
x
+
π
2
)
⋅
a
\sin(ax+\frac{\pi}{2})\cdot a
sin(ax+2π)⋅a =
a
sin
(
a
x
+
π
2
)
a\sin(ax+\frac{\pi}{2})
asin(ax+2π)
(1)
-
(
sin
(
a
x
+
b
)
)
′
(\sin{(ax+b)})'
(sin(ax+b))′=
sin
(
(
a
x
+
b
)
+
π
2
)
⋅
a
\sin((ax+b)+\frac{\pi}{2})\cdot a
sin((ax+b)+2π)⋅a =
a
sin
(
a
x
+
b
+
π
2
)
a\sin(ax+b+\frac{\pi}{2})
asin(ax+b+2π)
(1-1)
- 式(1)两边求导: ( sin a x ) ′ ′ (\sin{ax})'' (sinax)′′= a 2 sin ( a x + 2 π 2 ) a^2\sin(ax+2\frac{\pi}{2}) a2sin(ax+22π)
- 持续两边求导操作: ( sin a x ) ( n ) (\sin{ax})^{(n)} (sinax)(n)= a n sin ( a x + n π 2 ) a^{n}\sin{(ax+n\frac{\pi}{2})} ansin(ax+n2π)
-
(
sin
a
x
)
′
(\sin{ax})'
(sinax)′=
sin
(
a
x
+
π
2
)
⋅
a
\sin(ax+\frac{\pi}{2})\cdot a
sin(ax+2π)⋅a =
a
sin
(
a
x
+
π
2
)
a\sin(ax+\frac{\pi}{2})
asin(ax+2π)
- 类似的, ( sin a x + b ) ( n ) (\sin{ax+b})^{(n)} (sinax+b)(n)= a n sin ( a x + b + n π 2 ) a^{n}\sin(ax+b+n\frac{\pi}{2}) ansin(ax+b+n2π)
余弦型函数
-
求 cos x \cos{x} cosx的高阶导数时
- ( cos x ) ′ (\cos{x})' (cosx)′= − sin x -\sin{x} −sinx= cos ( x + π 2 ) \cos{(x+\frac{\pi}{2})} cos(x+2π)
-
两边同时求导, ( cos x ) ′ ′ (\cos{x})'' (cosx)′′= cos ( ( x + π 2 ) + π 2 ) \cos{((x+\frac{\pi}{2})+\frac{\pi}{2})} cos((x+2π)+2π)= cos ( x + 2 ⋅ π 2 ) \cos{(x+2\cdot\frac{\pi}{2})} cos(x+2⋅2π)
- ⋯ \cdots ⋯
- ( cos x ) ( n ) = cos ( x + n ⋅ π 2 ) (\cos{x})^{(n)}=\cos(x+n\cdot{\frac{\pi}{2}}) (cosx)(n)=cos(x+n⋅2π)
-
类似的可以得到: ( cos a x + b ) ( n ) (\cos{ax+b})^{(n)} (cosax+b)(n)= a n cos ( a x + b + n π 2 ) a^{n}\cos(ax+b+n\frac{\pi}{2}) ancos(ax+b+n2π)
幂型👺
-
y = x k y=x^{{k}} y=xk, k {k} k是任意常数 ( k ∈ R ) ({k}\in\mathbb{R}) (k∈R),求 y ( n ) y^{(n)} y(n);类似的求 y 1 = ( ( x + a ) k ) ( n ) y_1=((x+a)^k)^{(n)} y1=((x+a)k)(n)
-
n n n ( x k ) ( n ) (x^{{k}})^{(n)} (xk)(n) ( ( x + a ) k ) ( n ) ((x+a)^k)^{(n)} ((x+a)k)(n) 1 k x k − 1 {k}{x}^{{k}-1} kxk−1 k ( x + a ) k − 1 {k}{(x+a)}^{{k}-1} k(x+a)k−1 2 k ( k − 1 ) x k − 2 {k}({k}-1)x^{{k}-2} k(k−1)xk−2 k ( k − 1 ) ( x + a ) k − 2 {k}({k}-1)(x+a)^{{k}-2} k(k−1)(x+a)k−2 3 k ( k − 1 ) ( k − 2 ) x k − 3 {k}({k}-1)({k}-2)x^{{k}-3} k(k−1)(k−2)xk−3 k ( k − 1 ) ( k − 2 ) ( x + a ) k − 3 {k}({k}-1)({k}-2)(x+a)^{{k}-3} k(k−1)(k−2)(x+a)k−3 ⋮ \vdots ⋮ ⋮ \vdots ⋮ ⋮ \vdots ⋮ n n n k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) x k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}x^{{k}-n} k(k−1)(k−2)⋯(k−n+1)xk−n k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + a ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+a)^{{k}-n} k(k−1)(k−2)⋯(k−n+1)(x+a)k−n -
y 1 ( n ) y_1^{(n)} y1(n),即 ( ( x + a ) k ) ( n ) ((x+a)^k)^{(n)} ((x+a)k)(n)= k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + a ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+a)^{{k}-n} k(k−1)(k−2)⋯(k−n+1)(x+a)k−n
-
k
∈
N
+
k\in\mathbb{N}_{+}
k∈N+,有结论
- 若 k = n ∈ N + {k}=n\in\mathbb{N_{+}} k=n∈N+,则 ( ( x + a ) n ) ( n ) = n ! ((x+a)^{n})^{(n)}=n! ((x+a)n)(n)=n!;
- 若 k < n k<n k<n: ( ( x + a ) k ) ( n ) = 0 ((x+a)^{{k}})^{(n)}=0 ((x+a)k)(n)=0 即 ( ( x + a ) k ) ( k + n ) = 0 ((x+a)^{k})^{(k+n)}=0 ((x+a)k)(k+n)=0, ( n = 1 , 2 , ⋯ ) (n=1,2,\cdots) (n=1,2,⋯)
-
k
∉
N
k\notin{\mathbb{N}}
k∈/N,则无此结论
- 例如 y = ( x + 2 ) 2.1 y=(x+2)^{2.1} y=(x+2)2.1, y ′ = 2.1 ( x + 2 ) 1.1 y'=2.1(x+2)^{1.1} y′=2.1(x+2)1.1; y ′ ′ = 2.1 × 1.1 × ( x + 2 ) 0.1 y''=2.1\times{1.1}\times{(x+2)}^{0.1} y′′=2.1×1.1×(x+2)0.1, y ( 3 ) y^{(3)} y(3)= 2.1 × 1.1 × 0.1 × ( x + 2 ) − 0.9 2.1\times{1.1}\times0.1\times{(x+2)}^{-0.9} 2.1×1.1×0.1×(x+2)−0.9
-
k
∈
N
+
k\in\mathbb{N}_{+}
k∈N+,有结论
-
对于 y ( n ) y^{(n)} y(n)(即 y 1 ( n ) , a = 0 y_1^{(n)},a=0 y1(n),a=0):
- 若 k ∈ N + {k}\in{\mathbb{N}}_{+} k∈N+,且 k ⩾ n {k}\geqslant n k⩾n, ( x k ) ( n ) (x^{{k}})^{(n)} (xk)(n)= [ ∏ i = 1 n ( k − i + 1 ) ] x k − n [\prod_{i=1}^{n}({k}-i+1)]x^{{k}-n} [∏i=1n(k−i+1)]xk−n= A k n x k − n A_{{k}}^{n}x^{{k}-n} Aknxk−n= k ! ( k − n ) ! x k − n \frac{{k}!}{({k}-n)!}x^{{k}-n} (k−n)!k!xk−n
- 若 n = k ∈ N + n={k}\in\mathbb{N_{+}} n=k∈N+,则 ( x k ) ( k ) = k ! (x^{k})^{(k)}=k! (xk)(k)=k!;或 ( x n ) ( n ) = n ! (x^{n})^{(n)}=n! (xn)(n)=n!
- 若 k , n ∈ N + , k < n k,n\in\mathbb{N}_{+},{k}<n k,n∈N+,k<n: ( x k ) ( n ) = 0 (x^{{k}})^{(n)}=0 (xk)(n)=0 即 ( x k ) ( k + n ) = 0 (x^{k})^{(k+n)}=0 (xk)(k+n)=0, ( n = 1 , 2 , ⋯ ) (n=1,2,\cdots) (n=1,2,⋯)
-
对于 y 1 ( n ) , a = 1 y_1^{(n)},a=1 y1(n),a=1的时候,即 ( ( x + 1 ) k ) ( n ) ((x+1)^k)^{(n)} ((x+1)k)(n)= k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + 1 ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+1)^{{k}-n} k(k−1)(k−2)⋯(k−n+1)(x+1)k−n
- 若 k = n ∈ N + {k}=n\in\mathbb{N_{+}} k=n∈N+,则 ( ( x + 1 ) n ) ( n ) = n ! ((x+1)^{n})^{(n)}=n! ((x+1)n)(n)=n!;
- 若 k , n ∈ N + , k k,n\in\mathbb{N}_{+},{k} k,n∈N+,k: ( ( x + 1 ) k ) ( n ) = 0 ((x+1)^{{k}})^{(n)}=0 ((x+1)k)(n)=0 即 ( ( x + 1 ) k ) ( k + n ) = 0 ((x+1)^{k})^{(k+n)}=0 ((x+1)k)(k+n)=0, ( n = 1 , 2 , ⋯ ) (n=1,2,\cdots) (n=1,2,⋯)
-
-
( 1 x ) ( n ) (\frac{1}{x})^{(n)} (x1)(n)= ( − 1 ) n n ! x − ( n + 1 ) (-1)^n n!x^{-(n+1)} (−1)nn!x−(n+1)
-
1 x = x − 1 \frac{1}{x}=x^{-1} x1=x−1
-
n n n 导数 1 − 1 x − 2 -1x^{-2} −1x−2 2 ( − 1 ) ( − 2 ) x − 3 (-1)(-2)x^{-3} (−1)(−2)x−3 3 ( − 1 ) ( − 2 ) ( − 3 ) x − 4 (-1)(-2)(-3)x^{-4} (−1)(−2)(−3)x−4 … … n ( − 1 ) ( − 2 ) ( − 3 ) ⋯ ( − n ) x − ( n + 1 ) (-1)(-2)(-3)\cdots(-n)x^{-(n+1)} (−1)(−2)(−3)⋯(−n)x−(n+1)= ( − 1 ) n n ! x − ( n + 1 ) (-1)^n n!x^{-(n+1)} (−1)nn!x−(n+1)
-
P i 的 k 阶导数 P_i的k阶导数 Pi的k阶导数
-
P i ( x ) = a 0 + ∑ k = 1 n a k ( x − x 0 ) k P_i(x)=a_0+\sum\limits_{k=1}^{n} {a_k}(x-x_0)^{k} Pi(x)=a0+k=1∑nak(x−x0)k
-
对于i阶逼近函数P_i,对其求k阶导数;
P i ( k ) ( x 0 ) = 0 + ∑ 0 + a k k ! + ∑ 0 = a k k ! P_i^{(k)}(x_0)=0+\sum\limits0+a_{k}k!+\sum\limits0=a_kk! Pi(k)(x0)=0+∑0+akk!+∑0=akk! -
根据约束条件 f ( k ) ( x 0 ) f^{(k)}{(x_0)} f(k)(x0)
-
从而得到 a k = f ( k ) ( x 0 ) k ! a_k=\frac{f^{(k)}{(x_0)}}{k!} ak=k!f(k)(x0)
-
α = n 的时候 , f ( n ) ( x ) = α ! ( α − n ) ! = n ! \alpha=n的时候,f^{(n)}(x)=\frac{\alpha!}{(\alpha-n)!}=n! α=n的时候,f(n)(x)=(α−n)!α!=n!
自然对数型
-
y = ln ( 1 + x ) y=\ln(1+x) y=ln(1+x),求 y ( n ) y^{(n)} y(n)
-
阶数 n n n ( ln x ) ( n ) (\ln{x})^{(n)} (lnx)(n) ( ln ( 1 + x ) ) ( n ) (\ln(1+x))^{(n)} (ln(1+x))(n) 1 1 x \frac{1}{x} x1 1 1 + x \frac{1}{1+x} 1+x1 2 − 1 x 2 -\frac{1}{x^2} −x21 − 1 ( 1 + x ) 2 -\frac{1}{(1+x)^2} −(1+x)21 3 − ( − 1 x 4 ) 2 x -(-\frac{1}{x^{4}})2x −(−x41)2x= 1 × 2 x 3 \frac{1\times{2}}{x^3} x31×2 − ( − 1 ( 1 + x ) 4 ⋅ 2 ( 1 + x ) ⋅ 1 ) -(-\frac{1}{(1+x)^4}\cdot{2(1+x)}\cdot{1}) −(−(1+x)41⋅2(1+x)⋅1)= 1 ⋅ 2 ( 1 + x ) 3 \frac{1\cdot{2}}{(1+x)^3} (1+x)31⋅2 4 − 1 × 2 × 3 1 x 4 -1\times{2}\times{3}\frac{1}{x^{4}} −1×2×3x41 − 1 ⋅ 2 ⋅ 3 ( 1 + x ) 4 -\frac{1\cdot{2}\cdot{3}}{(1+x)^4} −(1+x)41⋅2⋅3 ⋮ \vdots ⋮ ⋮ \vdots ⋮ ⋮ \vdots ⋮ n n n ( 1 x ) ( n − 1 ) (\frac{1}{x})^{(n-1)} (x1)(n−1)= ( − 1 ) n − 1 ( n − 1 ) ! x − n (-1)^{n-1} (n-1)!x^{-n} (−1)n−1(n−1)!x−n ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n (-1)^{n-1}\frac{(n-1)!}{(1+x)^{n}} (−1)n−1(1+x)n(n−1)!
-
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了