MA@Taylor_常见幂级数展开@泰勒级数

AM@常见函数的幂级数(series)展开@泰勒级数TaylorSeries

  • 泰勒级数是一种用无限项连加式来表示一个函数的方法,这些相加的项由函数在某一点的导数求得。泰勒级数可以用多项式来近似函数,使得多项式的表达比函数的形式更加友好

ref

几何级数🎈

  • 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + ⋯ + x n + ⋯ ∀ x : ∣ x ∣ < 1 {\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}=1+x+x^{2}+\cdots +x^{n}+\cdots \quad \forall x:\left|x\right|<1} 1x1=n=0xn=1+x+x2++xn+x:x<1

二项式级数🎈

  • ( 1 + x ) α = ∑ n = 0 ∞ ( α n ) x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + ⋯ {\displaystyle (1+x)^{\alpha } =\sum _{n=0}^{\infty }{\binom {\alpha }{n}}x^{n} =1+\alpha x+{\frac {\alpha (\alpha -1)}{2!}}x^{2}+\cdots +{\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}x^{n}+\cdots } (1+x)α=n=0(nα)xn=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+

    • ∀ x : ∣ x ∣ < 1 , ∀ α ∈ C {\displaystyle \forall x:\left|x\right|<1,\forall \alpha \in \mathbb {C} } x:x<1,αC
    • 二项式系数 ( α n ) = ∏ k = 1 n α − k + 1 k = α ( α − 1 ) ⋯ ( α − n + 1 ) n ! {\displaystyle {\binom {\alpha }{n}}=\prod _{k=1}^{n}{\frac {\alpha -k+1}{k}}={\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}} (nα)=k=1nkαk+1=n!α(α1)(αn+1)

指数函数和自然对数🎈

  • e e e为底数的指数函数的麦克劳林序列是
  • e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯ ∀ x {\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots +{\frac {x^{n}}{n!}}+\cdots \quad \forall x} ex=n=0n!xn=1+x+2!x2+3!x3++n!xn+x (对所有X都成立)
  • ln ⁡ ( 1 − x ) = − ∑ n = 1 ∞ x n n = − x − x 2 2 − x 3 3 − ⋯ − x n n − ⋯ ∀ x ∈ [ − 1 , 1 ) {\displaystyle \ln(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}=-x-{\frac {x^{2}}{2}}-{\frac {x^{3}}{3}}-\cdots -{\frac {x^{n}}{n}}-\cdots \quad \forall x\in [-1,1)} ln(1x)=n=1nxn=x2x23x3nxnx[1,1)
    • 对于在区间[-1,1)内所有的X都成立
  • ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n x n = x − x 2 2 + x 3 3 − x 4 4 + x 5 5 − ⋯ + ( − 1 ) n + 1 n x n + ⋯ ∀ x ∈ ( − 1 , 1 ] {\displaystyle \ln(1+x)=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}x^{n}=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-\frac{x^4}{4}+\frac{x^5}{5}-\cdots +{\frac {(-1)^{n+1}}{n}}x^{n}+\cdots \quad \forall x\in (-1,1]} ln(1+x)=n=1n(1)n+1xn=x2x2+3x34x4+5x5+n(1)n+1xn+x(1,1]
    • 对于在区间(-1,1]内所有的X都成立

三角函数🎈

  • 常用的三角函数可以被展开为以下的麦克劳林序列:

  • sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + x 5 5 ! − ⋯ ∀ x cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − x 2 2 ! + x 4 4 ! − ⋯ ∀ x tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + x 3 3 + 2 x 5 15 + ⋯ ∀ x : ∣ x ∣ < π 2 sec ⁡ x = ∑ n = 0 ∞ ( − 1 ) n E 2 n ( 2 n ) ! x 2 n = 1 + x 2 2 + 5 x 4 24 + ⋯ ∀ x : ∣ x ∣ < π 2 arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + x 3 6 + 3 x 5 40 + ⋯ ∀ x : ∣ x ∣ ≤ 1 arccos ⁡ x = π 2 − arcsin ⁡ x = π 2 − ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = π 2 − x − x 3 6 − 3 x 5 40 + ⋯ ∀ x : ∣ x ∣ ≤ 1 arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − x 3 3 + x 5 5 − ⋯ ∀ x : ∣ x ∣ ≤ 1 ,   x ≠ ± i {\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots &&\forall x\\[6pt] \cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots &&\forall x\\[6pt] \tan x&=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}\left(1-4^{n}\right)}{(2n)!}}x^{2n-1}&&=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt] \sec x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}&&=1+{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt] \arcsin x&=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&=x+{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt] \arccos x&={\frac {\pi }{2}}-\arcsin x\\ &={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&={\frac {\pi }{2}}-x-{\frac {x^{3}}{6}}-{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt] \arctan x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}&&=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots &&\forall x:|x|\leq 1,\ x\neq \pm i\end{aligned}} } sinxcosxtanxsecxarcsinxarccosxarctanx=n=0(2n+1)!(1)nx2n+1=n=0(2n)!(1)nx2n=n=1(2n)!B2n(4)n(14n)x2n1=n=0(2n)!(1)nE2nx2n=n=04n(n!)2(2n+1)(2n)!x2n+1=2πarcsinx=2πn=04n(n!)2(2n+1)(2n)!x2n+1=n=02n+1(1)nx2n+1=x3!x3+5!x5=12!x2+4!x4=x+3x3+152x5+=1+2x2+245x4+=x+6x3+403x5+=2πx6x3403x5+=x3x3+5x5xxx:x<2πx:x<2πx:x1x:x1x:x1, x=±i

  • tan ⁡ ( x ) {\displaystyle \tan(x)} tan(x)展开式中的 B k B_k Bk是伯努利数。

  • sec ⁡ ( x ) {\displaystyle \sec(x)} sec(x)展开式中的 E k E_k Ek是欧拉数。

常用三角

  • sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = ∑ n = 0 ∞ ( − 1 ) n x t t = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + x 9 9 ! ⋯ t = 1 , 3 , 5 , 7 , 9 ⋯ \sin{x}=\sum\limits_{n=0}^{\infin}(-1)^n\frac{x^{2n+1}}{2n+1} =\sum\limits_{n=0}^{\infin}(-1)^n\frac{x^t}{t} =x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}\cdots \\ \\ t=1,3,5,7,9\cdots sinx=n=0(1)n2n+1x2n+1=n=0(1)ntxt=x3!x3+5!x57!x7+9!x9t=1,3,5,7,9

  • cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n 2 n = ∑ n = 0 ∞ ( − 1 ) n x t t = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + x 8 8 ! ⋯ t = 0 , 2 , 4 , 6 , 8 ⋯ \cos{x}=\sum\limits_{n=0}^{\infin}(-1)^n\frac{x^{2n}}{2n} =\sum\limits_{n=0}^{\infin}(-1)^n\frac{x^t}{t} =1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}\cdots \\ \\ t=0,2,4,6,8\cdots cosx=n=0(1)n2nx2n=n=0(1)ntxt=12!x2+4!x46!x6+8!x8t=0,2,4,6,8

双曲函数🎈

  • sinh ⁡ x = ∑ n = 0 ∞ 1 ( 2 n + 1 ) ! x 2 n + 1 ∀ x \sinh x=\sum _{n=0}^{\infty }{\frac {1}{(2n+1)!}}x^{2n+1}\quad \forall x sinhx=n=0(2n+1)!1x2n+1x

  • cosh ⁡ x = ∑ n = 0 ∞ 1 ( 2 n ) ! x 2 n ∀ x \cosh x=\sum _{n=0}^{\infty }{\frac {1}{(2n)!}}x^{2n}\quad \forall x coshx=n=0(2n)!1x2nx

  • tanh ⁡ x = ∑ n = 1 ∞ B 2 n 4 n ( 4 n − 1 ) ( 2 n ) ! x 2 n − 1 ∀ x : ∣ x ∣ < π 2 \tanh x=\sum _{n=1}^{\infty }{\frac {B_{2n}4^{n}(4^{n}-1)}{(2n)!}}x^{2n-1}\quad \forall x:\left|x\right|<{\frac {\pi }{2}} tanhx=n=1(2n)!B2n4n(4n1)x2n1x:x<2π

  • sinh ⁡ − 1 x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 ∀ x : ∣ x ∣ < 1 \sinh ^{-1}x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad \forall x:\left|x\right|<1 sinh1x=n=04n(n!)2(2n+1)(1)n(2n)!x2n+1x:x<1

  • tanh ⁡ − 1 x = ∑ n = 0 ∞ 1 2 n + 1 x 2 n + 1 ∀ x : ∣ x ∣ < 1 \tanh ^{-1}x=\sum _{n=0}^{\infty }{\frac {1}{2n+1}}x^{2n+1}\quad \forall x:\left|x\right|<1 tanh1x=n=02n+11x2n+1x:x<1

  • tanh ⁡ ( x ) {\displaystyle \tanh(x)} tanh(x)展开式中的 B k B_k Bk是伯努利数。

朗伯W函数🎈

  • W 0 ( x ) = ∑ n = 1 ∞ ( − n ) n − 1 n ! x n ∀ x : ∣ x ∣ < 1 e W_{0}(x)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}x^{n}\quad \forall x:\left|x\right|<{\frac {1}{e}} W0(x)=n=1n!(n)n1xnx:x<e1

多元函数的展开🎈

  • 泰勒级数可以推广到有多个变量的函数:

    • ∑ n 1 = 0 ∞ ⋯ ∑ n d = 0 ∞ ∂ n 1 + ⋯ + n d ∂ x 1 n 1 ⋯ ∂ x d n d f ( a 1 , ⋯   , a d ) n 1 ! ⋯ n d ! ( x 1 − a 1 ) n 1 ⋯ ( x d − a d ) n d \displaystyle\Large\sum _{n_{1}=0}^{\infty }\cdots \sum _{n_{d}=0}^{\infty }{\frac {\partial ^{n_{1}+\cdots +n_{d}}}{\partial x_{1}^{n_{1}}\cdots \partial x_{d}^{n_{d}}}}{\frac {f(a_{1},\cdots ,a_{d})}{n_{1}!\cdots n_{d}!}}(x_{1}-a_{1})^{n_{1}}\cdots (x_{d}-a_{d})^{n_{d}} n1=0nd=0x1n1xdndn1++ndn1!nd!f(a1,,ad)(x1a1)n1(xdad)nd

幂级数小结

  • 常见函数的幂级数展开🎈运用这些展开可以得到一些重要的恒等式。
  1. ∀ x ∈ C ,   e x = ∑ n = 0 + ∞ x n n ! . \forall x\in {\mathbb {C}},\,e^{x}=\sum _{{n=0}}^{{+{\infty }}}{{\frac {x^{n}}{n!}}}. xC,ex=n=0+n!xn.
  2. ∀ x ∈ R ,   cos ⁡ x = ∑ n = 0 + ∞ ( − 1 ) n   x 2   n ( 2   n ) ! . \forall x\in {\mathbb {R}},\,\cos x=\sum _{{n=0}}^{{+{\infty }}}(-1)^{n}\,{{\frac {x^{{2\,n}}}{(2\,n)!}}}. xR,cosx=n=0+(1)n(2n)!x2n.
  3. ∀ x ∈ R ,   sin ⁡ x = ∑ n = 0 + ∞ ( − 1 ) n   x 2   n + 1 ( 2   n + 1 ) ! . \forall x\in {\mathbb {R}},\,\sin x=\sum _{{n=0}}^{{+{\infty }}}(-1)^{n}\,{{\frac {x^{{2\,n+1}}}{(2\,n+1)!}}}. xR,sinx=n=0+(1)n(2n+1)!x2n+1.
  4. ∀ x ∈ R ,   ch ⁡   x = ∑ n = 0 + ∞ x 2   n ( 2   n ) ! . \forall x\in {\mathbb {R}},\,\operatorname {ch}\,x=\sum _{{n=0}}^{{+{\infty }}}{{\frac {x^{{2\,n}}}{(2\,n)!}}}. xR,chx=n=0+(2n)!x2n.
  5. ∀ x ∈ R ,   sh ⁡   x = ∑ n = 0 + ∞ x 2   n + 1 ( 2   n + 1 ) ! . \forall x\in {\mathbb {R}},\,\operatorname {sh}\,x=\sum _{{n=0}}^{{+{\infty }}}{{\frac {x^{{2\,n+1}}}{(2\,n+1)!}}}. xR,shx=n=0+(2n+1)!x2n+1.
  6. ∀ x ∈ D ( 0 , 1 ) ,   1 1 − x = ∑ n = 0 + ∞ x n . \forall x\in D(0,1),\,{1 \over {1-x}}=\sum _{{n=0}}^{{+{\infty }}}{x^{n}}. xD(0,1),1x1=n=0+xn.
  7. ∀ x ∈ ( − 1 , 1 ] ,   ln ⁡ ( 1 + x ) = ∑ n = 1 + ∞ ( − 1 ) n + 1 x n n . ) \forall x\in (-1,1],\,\ln(1+x)=\sum _{{n=1}}^{{+{\infty }}}(-1)^{{n+1}}{x^{{n}} \over {n}}.) x(1,1],ln(1+x)=n=1+(1)n+1nxn.)
  8. ∀ x ∈ [ − 1 , 1 ] ,   arctan ⁡   x = ∑ n = 0 + ∞ ( − 1 ) n   x 2   n + 1 2   n + 1    \forall x\in [-1,1],\,\arctan \,x=\sum _{{n=0}}^{{+{\infty }}}(-1)^{n}\,{{\frac {x^{{2\,n+1}}}{2\,n+1}}}\; x[1,1],arctanx=n=0+(1)n2n+1x2n+1,特别地, π = 4   ∑ n = 0 + ∞ ( − 1 ) n 2   n + 1 \pi =4\,\sum _{{n=0}}^{{+{\infty }}}{{\frac {(-1)^{{n}}}{2\,n+1}}} π=4n=0+2n+1(1)n
  9. ∀ x ∈   ( − 1 , 1 ) ,   ∀ α   ∉   N ,   ( 1 + x ) α   = 1    +    ∑ n = 1 + ∞ α   ( α − 1 ) ⋯ ( α − n + 1 ) n !   x n . \forall x\in \,(-1,1),\ \forall \alpha \,\not \in \,{\mathbb {N}},\,(1+x)^{\alpha }\,=1\;+\;\sum _{{n=1}}^{{+{\infty }}}{{\frac {\alpha \,(\alpha -1)\cdots (\alpha -n+1)}{n!}}\,x^{n}}. x(1,1), αN,(1+x)α=1+n=1+n!α(α1)(αn+1)xn.
  10. ∀ x ∈ R ,   ∀ α   ∈   N ,   ( 1 + x ) α   = 1    +    ∑ n = 1 + ∞ α   ( α − 1 ) ⋯ ( α − n + 1 ) n !   x n = ∑ n = 0 α ( α n )   x n . \forall x\in {\mathbb {R}},\,\forall \alpha \,\in \,{\mathbb {N}},\,(1+x)^{\alpha }\,=1\;+\;\sum _{{n=1}}^{{+{\infty }}}{{\frac {\alpha \,(\alpha -1)\cdots (\alpha -n+1)}{n!}}\,x^{n}}=\sum _{{n=0}}^{{\alpha }}{{\alpha \choose n}\,x^{n}}. xR,αN,(1+x)α=1+n=1+n!α(α1)(αn+1)xn=n=0α(nα)xn.
  11. ∀ x ∈ ( − 1 , 1 ) ,   artanh ⁡   x = ∑ n = 0 + ∞   x 2   n + 1 2   n + 1 . \forall x\in (-1,1),\,\operatorname {artanh}\,x=\sum _{{n=0}}^{{+{\infty }}}\,{{\frac {x^{{2\,n+1}}}{2\,n+1}}}. x(1,1),artanhx=n=0+2n+1x2n+1.
  12. ∀ x ∈ ( − 1 , 1 ) ,   arcsin ⁡   x = x + ∑ n = 1 + ∞   ( ∏ k = 1 n   ( 2   k − 1 ) ∏ k = 1 n   2   k ) x 2   n + 1 2   n + 1 \forall x\in (-1,1),\,\arcsin \,x=x+\sum _{{n=1}}^{{+{\infty }}}\,\left({{\frac {\prod _{{k=1}}^{{n}}\,(2\,k-1)}{\prod _{{k=1}}^{{n}}\,2\,k}}}\right){{\frac {x^{{2\,n+1}}}{2\,n+1}}} x(1,1),arcsinx=x+n=1+(k=1n2kk=1n(2k1))2n+1x2n+1
  13. ∀ x ∈ ( − 1 , 1 ) ,   arsinh ⁡   x = x + ∑ n = 0 + ∞   ( − 1 ) n   ( ∏ k = 1 n   ( 2   k − 1 ) ∏ k = 1 n   2   k ) x 2   n + 1 2   n + 1 \forall x\in (-1,1),\,\operatorname {arsinh}\,x=x+\sum _{{n=0}}^{{+{\infty }}}\,(-1)^{n}\,\left({{\frac {\prod _{{k=1}}^{{n}}\,(2\,k-1)}{\prod _{{k=1}}^{{n}}\,2\,k}}}\right){{\frac {x^{{2\,n+1}}}{2\,n+1}}} x(1,1),arsinhx=x+n=0+(1)n(k=1n2kk=1n(2k1))2n+1x2n+1
  14. ∀ x ∈   ( − π 2 , π 2 ) ,   tan ⁡ x = 2 π   ∑ n = 0 + ∞   ( x π ) 2   n + 1 ( 2 2   n + 2 − 1 )    ζ ( 2   n + 2 ) \forall x\in \,\left(-{\frac {\pi }{2}},{\frac {\pi }{2}}\right),\ \tan x={\frac {2}{\pi }}\,\sum _{{n=0}}^{{+{\infty }}}\,{\left({{\frac {x}{\pi }}}\right)}^{{2\,n+1}}(2^{{2\,n+2}}-1)\;\zeta (2\,n+2) x(2π,2π), tanx=π2n=0+(πx)2n+1(22n+21)ζ(2n+2),其中 ∀ p > 1 ,   ζ ( p ) = ∑ n = 1 + ∞   1 n p \forall p>1,\,\zeta (p)=\sum _{{n=1}}^{{+{\infty }}}\,{\frac {1}{n^{p}}} p>1,ζ(p)=n=1+np1

特点

  • 三角函数的幂级数展开公式的累加下限大多从 n = 0 n=0 n=0开始计算

    • 注意到两个公差 d = 2 d=2 d=2的数列:( n = 0 , 1 , 2 , . . . n=0,1,2,... n=0,1,2,...)
    • 借助这几个序列,我们可以快速地准确地流水地写出幂级数展开式😁😎☆*: .。. o(≧▽≦)o .。.:*☆
  • { p = 2 n = 0 , 2 , 4 , 6 , . . . q = 2 n + 1 = 1 , 3 , 5 , 7 , . . . \begin{cases} {p=2n}=0,2,4,6,... \\ {q=2n+1}=1,3,5,7,... \end{cases} {p=2n=0,2,4,6,...q=2n+1=1,3,5,7,...

    交错符号sg(n);
    s g = ( − 1 ) n = 1 , − 1 , 1 , − 1 , . . . sg=(-1)^n=1,-1,1,-1,... sg=(1)n=1,1,1,1,...

  • 两个交错级数可以写成
    c o s x = ∑ n = 0 ∞ ( − 1 ) n p ! ⋅ x p cosx=\sum\limits_{n=0}^{\infin}\frac{(-1)^{n}}{p!}\cdot x^{p} cosx=n=0p!(1)nxp
    s i n x = ∑ n = 0 ∞ ( − 1 ) n q ! ⋅ x q sinx=\sum\limits_{n=0}^{\infin}\frac{(-1)^{n}}{q!}\cdot x^{q} sinx=n=0q!(1)nxq
    进一步 , 可以抽象出 T ( t ) = ∑ n = 0 ∞ ( − 1 ) n t ! ⋅ x t , c o s x = T ( p ) = T ( 2 n ) , s i n x = T ( q ) = T ( 2 n + 1 ) 进一步,可以抽象出T(t)=\sum\limits_{n=0}^{\infin}\frac{(-1)^{n}}{t!}\cdot x^{t} ,cosx=T(p)=T(2n),sinx=T(q)=T(2n+1) 进一步,可以抽象出T(t)=n=0t!(1)nxt,cosx=T(p)=T(2n),sinx=T(q)=T(2n+1)

  • 最后 , 流水的写出展开式的各项的因子 : 最后,流水的写出展开式的各项的因子: 最后,流水的写出展开式的各项的因子:

    • 符号 s g , 系数绝对值 1 t ! , x 的幂 x t ; 符号sg,系数绝对值\frac{1}{t!},x的幂x^t; 符号sg,系数绝对值t!1,x的幂xt;
posted @   xuchaoxin1375  阅读(27)  评论(0编辑  收藏  举报  
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示