迎来QQ群吹逼,群号:538254037
3.1总览
使用雷诺分解,速度可以写为系综平均和脉动量相加的形式:
U ( x , t ) Instantaneous Velocity = ⟨ U ( x , t ) ⟩ Mean Velocity + u ( x , t ) Fluctuating Velocity U ( x , t ) ⏟ Instantaneous Velocity = ⟨ U ( x , t ) ⟩ ⏟ Mean Velocity + u ( x , t ) ⏟ Fluctuating Velocity
首先是连续方程:
∇ ⋅ U ( x , t ) = 0 ∇ ⋅ U ( x , t ) = 0
对上式整体取平均,然后根据上一篇博客中的随机场理论,梯度的平均等于平均值的梯度可得:
⟨ ∇ ⋅ U ( x , t ) ⟩ = ∇ ⋅ ⟨ U ( x , t ) ⟩ = 0 ⟨ ∇ ⋅ U ( x , t ) ⟩ = ∇ ⋅ ⟨ U ( x , t ) ⟩ = 0
然后可得:
∇ ⋅ ⟨ U ( x , t ) ⟩ = 0 ∇ ⋅ u ( x , t ) = 0 (1) (2) (1) ∇ ⋅ ⟨ U ( x , t ) ⟩ = 0 (2) ∇ ⋅ u ( x , t ) = 0
根据物质导数或随流导数的定义可得:
D U j D t Material Derivative = ∂ U j ∂ t Storage + ∂ ∂ x i ( U i U j ) Advection ⟨ D U j D t ⟩ = ∂ ⟨ U j ⟩ ∂ t + ∂ ∂ x i ⟨ U i U j ⟩ . (3) (4) (3) D U j D t ⏟ Material Derivative = ∂ U j ∂ t ⏟ Storage + ∂ ∂ x i ( U i U j ) ⏟ Advection (4) ⟨ D U j D t ⟩ = ∂ ⟨ U j ⟩ ∂ t + ∂ ∂ x i ⟨ U i U j ⟩ .
但是 ⟨ U i U j ⟩ [ m 2 s − 2 ] ⟨ U i U j ⟩ [ m 2 s − 2 ] 这一项未知,需要为这一项寻找表达式,展开上式后可得:
⟨ U i U j ⟩ = ⟨ ( ⟨ U i ⟩ + u i ) ( ⟨ U j ⟩ + u j ) ⟩ = ⟨ ⟨ U i ⟩ ⟨ U j ⟩ + u i ⟨ U j ⟩ + u j ⟨ U i ⟩ + u i u j ⟩ = ⟨ U i ⟩ ⟨ U j ⟩ + ⟨ u i u j ⟩ ⟨ U i U j ⟩ = ⟨ ( ⟨ U i ⟩ + u i ) ( ⟨ U j ⟩ + u j ) ⟩ = ⟨ ⟨ U i ⟩ ⟨ U j ⟩ + u i ⟨ U j ⟩ + u j ⟨ U i ⟩ + u i u j ⟩ = ⟨ U i ⟩ ⟨ U j ⟩ + ⟨ u i u j ⟩
在上式中,由于 u i u i 和 u j u j 的 PDF 均值为0,所以 u i ⟨ U j ⟩ u i ⟨ U j ⟩ 和 u j ⟨ U i ⟩ u j ⟨ U i ⟩ 也为 0 0 。即:脉动量为正值或者负值的几率相当。
将展开后的带入物质导数,可得:
⟨ D U j D t ⟩ = ∂ ⟨ U j ⟩ ∂ t + ∂ ∂ x i ( ⟨ U i ⟩ ⟨ U j ⟩ + ⟨ u i u j ⟩ ) = ∂ ⟨ U j ⟩ ∂ t + ⟨ U i ⟩ ∂ ∂ x i ⟨ U j ⟩ + ∂ ∂ x i ⟨ u i u j ⟩ (5) (6) (5) ⟨ D U j D t ⟩ = ∂ ⟨ U j ⟩ ∂ t + ∂ ∂ x i ( ⟨ U i ⟩ ⟨ U j ⟩ + ⟨ u i u j ⟩ ) (6) = ∂ ⟨ U j ⟩ ∂ t + ⟨ U i ⟩ ∂ ∂ x i ⟨ U j ⟩ + ∂ ∂ x i ⟨ u i u j ⟩
上式的第二个等号后面使用了 ∂ ⟨ U i ⟩ / ∂ x i = 0 ∂ ⟨ U i ⟩ / ∂ x i = 0 条件。
使用
¯ D ¯ D t ≡ ∂ ∂ t + ⟨ U ⟩ ⋅ ∇ D ¯ D ¯ t ≡ ∂ ∂ t + ⟨ U ⟩ ⋅ ∇
可以进一步简化上式。简化后的速度场的物质导数为:
⟨ D U j D t ⟩ Mean of Material Derivative = ¯ D ¯ D t ⟨ U j ⟩ Mean Substantial Derivative of Mean + ∂ ∂ x i ⟨ u i u j ⟩ Reynolds Stresses ⟨ D U j D t ⟩ ⏟ Mean of Material Derivative = D ¯ D ¯ t ⟨ U j ⟩ ⏟ Mean Substantial Derivative of Mean + ∂ ∂ x i ⟨ u i u j ⟩ ⏟ Reynolds Stresses
由上式可以看出,平均速度的平均物质导数与物质导数的平均是不一样的。由此可得平均动量方程:
¯ D ⟨ U j ⟩ ¯ D t Mean Substantial Derivative of Mean = ν ∇ 2 ⟨ U j ⟩ Surface Forces − ∂ ⟨ u i u j ⟩ ∂ x i Reynolds Stresses − 1 ρ ∂ ⟨ p ⟩ ∂ x j Normal and Body Forces D ¯ ⟨ U j ⟩ D ¯ t ⏟ Mean Substantial Derivative of Mean = ν ∇ 2 ⟨ U j ⟩ ⏟ Surface Forces − ∂ ⟨ u i u j ⟩ ∂ x i ⏟ Reynolds Stresses − 1 ρ ∂ ⟨ p ⟩ ∂ x j ⏟ Normal and Body Forces
很多湍流模型是为了解决上式中的雷诺应力项,这一项也是湍流的封闭问题(closure problem)。
3.2 张量的性质
雷诺应力项 ⟨ u i u j ⟩ ⟨ u i u j ⟩ 是一个二阶张量,具有对称性,即:⟨ u i u j ⟩ = ⟨ u j u i ⟩ ⟨ u i u j ⟩ = ⟨ u j u i ⟩ 。这一张量的对角线(diagonal)元素 ⟨ u i u i ⟩ ⟨ u i u i ⟩ 被称为正应力,而非对角线的元素被称为切应力(shear stress)。雷诺应力可被写为张量形式:
⎡ ⎢
⎢ ⎣ ⟨ u 2 1 ⟩ ⟨ u 1 u 2 ⟩ ⟨ u 1 u 3 ⟩ ⟨ u 2 u 1 ⟩ ⟨ u 2 2 ⟩ ⟨ u 2 u 3 ⟩ ⟨ u 3 u 1 ⟩ ⟨ u 3 u 2 ⟩ ⟨ u 2 3 ⟩ ⎤ ⎥
⎥ ⎦ [ ⟨ u 1 2 ⟩ ⟨ u 1 u 2 ⟩ ⟨ u 1 u 3 ⟩ ⟨ u 2 u 1 ⟩ ⟨ u 2 2 ⟩ ⟨ u 2 u 3 ⟩ ⟨ u 3 u 1 ⟩ ⟨ u 3 u 2 ⟩ ⟨ u 3 2 ⟩ ]
湍动能(turbulence kinetic energy):上述矩阵的迹(trace)
k ≡ 1 2 ⟨ u ⋅ u ⟩ = 1 2 ⟨ u i u i ⟩ k ≡ 1 2 ⟨ u ⋅ u ⟩ = 1 2 ⟨ u i u i ⟩
3.3 各向异性 (Anisotropy)
切应力和正应力之间的不同取决于坐标系的选择。比如,当坐标系旋转后,雷诺应力张量中的成分可能会发生变化。因此,有必要将雷诺应力写成各向同性 (Isotropic) 项和各项异性 (Anisotropy) 项。
⟨ u i u j ⟩ = ⟨ u i u j ⟩ − 2 3 k δ i j Anisotropic Part + 2 3 k δ i j Isotropic Part ⟨ u i u j ⟩ = ⟨ u i u j ⟩ − 2 3 k δ i j ⏟ Anisotropic Part + 2 3 k δ i j ⏟ Isotropic Part
各项异性项可被写为:a i j ≡ ⟨ u i u j ⟩ − 2 3 k δ i j [ m 2 s − 2 ] a i j ≡ ⟨ u i u j ⟩ − 2 3 k δ i j [ m 2 s − 2 ] 。一个重要的概念是:只有各项异性的项在湍流的输运中有效。因此可以将雷诺应力中的各项异性项和压力项写在一起:
ρ ∂ ⟨ u i u j ⟩ ∂ x i + ∂ ⟨ p ⟩ ∂ x j = ρ ∂ a i j ∂ x i + ∂ ∂ x j ( ⟨ p ⟩ + 2 3 ρ k ) ρ ∂ ⟨ u i u j ⟩ ∂ x i + ∂ ⟨ p ⟩ ∂ x j = ρ ∂ a i j ∂ x i + ∂ ∂ x j ( ⟨ p ⟩ + 2 3 ρ k )
各项同性项 2 3 ρ k [ k g m − 1 s − 2 ] 2 3 ρ k [ k g m − 1 s − 2 ] 可以被压力项吸收。
3.4 平均剪切方程 (Mean Scalar Equation)
对被动标量 ϕ ( x , t ) ϕ ( x , t ) 使用雷诺分解:
ϕ ( x , t ) Instantaneous Scalar = ⟨ ϕ ( x , t ) ⟩ Mean Scalar + ϕ ′ ( x , t ) Fluctuating Scalar ϕ ( x , t ) ⏟ Instantaneous Scalar = ⟨ ϕ ( x , t ) ⟩ ⏟ Mean Scalar + ϕ ′ ( x , t ) ⏟ Fluctuating Scalar
一个瞬时被动标量场 (instantaneous passive scalar field) 的控制方程为:
∂ ϕ ∂ t Storage + ∇ ⋅ ( U ϕ ) Advection = Γ ∇ 2 ϕ Diffusion ∂ ϕ ∂ t ⏟ Storage + ∇ ⋅ ( U ϕ ) ⏟ Advection = Γ ∇ 2 ϕ ⏟ Diffusion
唯一的非线性项 U ϕ U ϕ 可写为:
⟨ U ϕ ⟩ = ⟨ ( ⟨ U ⟩ + u ) ( ⟨ ϕ ⟩ + ϕ ′ ) ⟩ = ⟨ U ⟩ ⟨ ϕ ⟩ + ⟨ u ϕ ′ ⟩ . ⟨ U ϕ ⟩ = ⟨ ( ⟨ U ⟩ + u ) ( ⟨ ϕ ⟩ + ϕ ′ ) ⟩ = ⟨ U ⟩ ⟨ ϕ ⟩ + ⟨ u ϕ ′ ⟩ .
速度标量协方差 (velocity-scalar covariance) ⟨ u ϕ ′ ⟩ ⟨ u ϕ ′ ⟩ 被称为标量通量 (scalar flux)。它表示速度场的脉动引起的标量的通量:
∂ ⟨ ϕ ⟩ ∂ t + ∇ ⋅ ( ⟨ U ⟩ ⟨ ϕ ⟩ + ⟨ u ϕ ′ ⟩ ) = Γ ∇ 2 ⟨ ϕ ⟩ , ¯ D ⟨ ϕ ⟩ ¯ D t = ∇ ⋅ ( Γ ∇ ⟨ ϕ ⟩ − ⟨ u ϕ ′ ⟩ ) . (7) (8) (7) ∂ ⟨ ϕ ⟩ ∂ t + ∇ ⋅ ( ⟨ U ⟩ ⟨ ϕ ⟩ + ⟨ u ϕ ′ ⟩ ) = Γ ∇ 2 ⟨ ϕ ⟩ , (8) D ¯ ⟨ ϕ ⟩ D ¯ t = ∇ ⋅ ( Γ ∇ ⟨ ϕ ⟩ − ⟨ u ϕ ′ ⟩ ) .
这个公式也会带来新的封闭性问题,⟨ u ϕ ′ ⟩ ⟨ u ϕ ′ ⟩ 这一项需要额外的建模或者参数化。
3.5 梯度扩散和湍流粘性假设
gradient-diffusion hypothesis or turbulent-viscosity hypothesis:
平均标量通量与平均标量梯度的负值成正比。
比例常数又被称为湍流扩散率 (turbulent diffusivity),其本身也是空间和时间的函数:Γ T ( x , t ) [ m 2 s − 1 ] Γ T ( x , t ) [ m 2 s − 1 ] :
⟨ u ϕ ′ ⟩ = − Γ T ∇ ⟨ ϕ ⟩ ⟨ u ϕ ′ ⟩ = − Γ T ∇ ⟨ ϕ ⟩
下标 T T 代表湍流,Γ T Γ T 为湍流扩散率,不要和分子扩散率 Γ Γ 混淆。
此时可以将分子扩散率和湍流扩散率结合为有效扩散率 (effective diffusivity):
Γ eff ( x , t ) Effective Diffusivity = Γ Molecular Diffusivity + Γ T ( x , t ) Turbulent Diffusivity Γ eff ( x , t ) ⏟ Effective Diffusivity = Γ ⏟ Molecular Diffusivity + Γ T ( x , t ) ⏟ Turbulent Diffusivity
在这种模型下(注:这里是基于上述假设的建模,并不一定是真正的情况),公式可以用有效扩散率简化为:
¯ D ⟨ ϕ ⟩ ¯ D t Mean Substantial Derivative of Mean = ∇ ⋅ ( Γ e f f ∇ ⟨ ϕ ⟩ ) Diffusion of Mean D ¯ ⟨ ϕ ⟩ D ¯ t ⏟ Mean Substantial Derivative of Mean = ∇ ⋅ ( Γ e f f ∇ ⟨ ϕ ⟩ ) ⏟ Diffusion of Mean
对于平均动量方程,梯度扩散假设 (gradient-diffusion hypothesis) 相对更为困难。此时更应该基于各向异性 (anisotropic) 部分建模,建模时可以根据平均拉伸率:
⟨ u i u j ⟩ − 2 3 k δ i j = − v T ( ∂ ⟨ U i ⟩ ∂ x j + ∂ ⟨ U j ⟩ ∂ x i ) = − 2 v T ¯ S i j (9) (10) (9) ⟨ u i u j ⟩ − 2 3 k δ i j = − v T ( ∂ ⟨ U i ⟩ ∂ x j + ∂ ⟨ U j ⟩ ∂ x i ) (10) = − 2 v T S ¯ i j
ν T ν T : turbulent viscosity or eddy viscosity
此时方程可写为:
¯ D ¯ D t ⟨ U j ⟩ Mean Substantial Derivative of Mean = ∂ ∂ x i [ v eff ( ∂ ⟨ U i ⟩ ∂ x j + ∂ ⟨ U j ⟩ ∂ x i ) ] Surface Forces and Revnolds Stress − 1 ρ ∂ ∂ x j ( ⟨ p ⟩ + 2 3 ρ k ) Modified Pressure D ¯ D ¯ t ⟨ U j ⟩ ⏟ Mean Substantial Derivative of Mean = ∂ ∂ x i [ v eff ( ∂ ⟨ U i ⟩ ∂ x j + ∂ ⟨ U j ⟩ ∂ x i ) ] ⏟ Surface Forces and Revnolds Stress − 1 ρ ∂ ∂ x j ( ⟨ p ⟩ + 2 3 ρ k ) ⏟ Modified Pressure
其中:
ν eff ( x , t ) Effective Viscosity = ν Molecular Viscosity + ν T ( x , t ) Turbulent Viscosity ν eff ( x , t ) ⏟ Effective Viscosity = ν ⏟ Molecular Viscosity + ν T ( x , t ) ⏟ Turbulent Viscosity
为有效粘性。
⟨ p ⟩ + 2 3 ρ k ⟨ p ⟩ + 2 3 ρ k : modified pressure.
同分子扩散率一样,湍流扩散率也可以被无量纲化。
Turbulent Prandtl number:
Pr T = v T Γ T Pr T = v T Γ T
Turbulent Schmidt number:
S c T = ν T Γ T S c T = ν T Γ T
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!