TensorFlow使用记录 (二): 理解tf.nn.conv2d方法
方法定义
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None)
参数:
- input: 输入的要做卷积的数据体,要求是一个`Tensor`
- filter: 卷积核,要求也是一个`Tensor`, shape= [filter_height, filter_width, in_channels, out_channels], 其中 filter_height 为卷积核高度,filter_weight 为卷积核宽度,in_channel 是要做卷积的数据体的通道数 ,out_channel 是卷积核数量。
- strides: 卷积步长(1-D tensor of length 4), shape=[1, strides, strides, 1],第一位和最后一位固定是1
- padding: A `string` from: `"SAME", "VALID"`. "SAME" 表示使用0去填充边界, "VALID"则不填充
-
data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`.
Specify the data format of the input and output data.
With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. -
name: A name for the operation (optional).
具体实现
input shape: [batch, in_height, in_width, in_channels]
filter shape: [filter_height, filter_width, in_channels, out_channels]
计算过程:
1. 将filter展开成2-D matrix, shape: [filter_height*filter_width*in_channels, output_channels]
2. 从input tensor中提取patches构成一个virtual tensor, shape: [batch, out_height, out_width, filter_height*filter_width*in_channels]
3. 对于每一个patch,右乘上1中的filter matrix。即 [batch, out_height, out_width, filter_height*filter_width*in_channels] x [filter_height * filter_width * in_channels, output_channels], 那么输出的shape: [batch, out_height, out_width, output_channels]
【注:必须有 strides[0] = strides[3] = 1】。绝大多数情况下,水平的stride和竖直的stride一样,即strides = [1, stride, stride, 1]。
输出结果的shape计算:
在caffe中是这样的:
out_height =floor(in_height+2*pad-filter_height)/stride+1; floor向下取整
out_width=floor(in_width+2*pad-filter_width)/stride+1
在TensorFlow中是这样的:
"SAME" 类型的padding:
out_height = ceil(in_height / strides[1]); ceil向上取整
out_width = ceil(in_width / strides[2])
"VALID"类型的padding:
out_height = ceil((in_height - filter_height + 1) / striders[1])
out_width = ceil((in_width - filter_width + 1) / striders[2])
验证代码
# -*- coding:utf-8 -*- from __future__ import division import tensorflow as tf import numpy as np import math import pandas as pd input_arr = np.zeros((12, 15), dtype=np.float32) number = 0 for row_idx in range(input_arr.shape[0]): for col_idx in range(input_arr.shape[1]): input_arr[row_idx][col_idx] = number number +=1 number = 6 w_arr = np.zeros((2, 3), dtype=np.float32) for row_idx in range(w_arr.shape[0]): for col_idx in range(w_arr.shape[1]): w_arr[row_idx][col_idx] = number number += 1 stride = [1, 1, 1, 1] # 从卷积的定义【实际上不是卷积,而是cross-correlation】进行计算验证---对VALID类型卷积进行 res_shape_h = int(math.ceil((input_arr.shape[0] - w_arr.shape[0] + 1) / stride[1])) res_shape_w = int(math.ceil(input_arr.shape[1] - w_arr.shape[1] + 1) / stride[2]) validation_res = np.zeros(shape=(res_shape_h, res_shape_w), dtype=np.float32) for row_idx in range(validation_res.shape[0]): for col_idx in range(validation_res.shape[1]): patch = input_arr[row_idx : row_idx+w_arr.shape[0], col_idx : col_idx+w_arr.shape[1]] # 这里的 * 实际上代表的是点积,即对应元素位置相乘 res = np.sum(patch * w_arr) validation_res[row_idx][col_idx] = res print('result of convolution from its definition: validation_res') print(validation_res) pd.DataFrame(validation_res).to_csv('validation_res.csv', index = False, header=False) # 从TensorFlow实现出发 input_arr = np.reshape(input_arr, [1, input_arr.shape[0], input_arr.shape[1], 1]) w_arr = np.reshape(w_arr, [w_arr.shape[0], w_arr.shape[1], 1, 1]) # 输入Tensor, shape: [1, 12, 15, 1] net_in = tf.constant(value=input_arr, dtype=tf.float32) # filter, shape: [2, 3, 1, 1] W = tf.constant(value=w_arr, dtype=tf.float32) # TensorFlow卷积的计算结果 # valid卷积结果, shape: [1, 11, 13, 1] result_conv_valid = tf.nn.conv2d(net_in, W, stride, 'VALID') # same卷积结果, shape: [1, 12, 15, 1] result_conv_smae = tf.nn.conv2d(net_in, W, stride, 'SAME') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) valid_conv_res, same_conv_res = sess.run([result_conv_valid, result_conv_smae]) print(valid_conv_res.shape) valid_conv_res = np.reshape(valid_conv_res, [valid_conv_res.shape[1], valid_conv_res.shape[2]]) same_conv_res = np.reshape(same_conv_res, [same_conv_res.shape[1], same_conv_res.shape[2]]) print('TensorFlow con res: valid_conv_res') print(valid_conv_res) pd.DataFrame(valid_conv_res).to_csv('conv_res.csv', index=False, header=False) pd.DataFrame(same_conv_res).to_csv('same_res.csv', index=False, header=False)