TensorFlow使用记录 (八): 梯度修剪 和 Max-Norm Regularization
梯度修剪
梯度修剪主要避免训练梯度爆炸的问题,一般来说使用了 Batch Normalization 就不必要使用梯度修剪了,但还是有必要理解下实现的
In TensorFlow, the optimizer’s minimize() function takes care of both computing the gradients and applying them, so you must instead call the optimizer’s compute_gradients() method first, then create an operation to clip the gradients using the clip_by_value() function, and finally create an operation to apply the clipped gradients using the optimizer’s apply_gradients() method:
threshold = 1.0 optimizer = tf.train.GradientDescentOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(loss) capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var) for grad, var in grads_and_vars] training_op = optimizer.apply_gradients(capped_gvs)
例子:
import tensorflow as tf def Swish(features): return features*tf.nn.sigmoid(features) # 1. create data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) X = tf.placeholder(tf.float32, shape=(None, 784), name='X') y = tf.placeholder(tf.int32, shape=(None), name='y') is_training = tf.placeholder(tf.bool, None, name='is_training') # 2. define network he_init = tf.contrib.layers.variance_scaling_initializer() with tf.name_scope('dnn'): hidden1 = tf.layers.dense(X, 300, kernel_initializer=he_init, name='hidden1') # hidden1 = tf.layers.batch_normalization(hidden1, momentum=0.9) hidden1 = tf.nn.relu(hidden1) hidden2 = tf.layers.dense(hidden1, 100, kernel_initializer=he_init, name='hidden2') # hidden2 = tf.layers.batch_normalization(hidden2, training=is_training, momentum=0.9) hidden2 = tf.nn.relu(hidden2) logits = tf.layers.dense(hidden2, 10, kernel_initializer=he_init, name='output') # prob = tf.layers.dense(hidden2, 10, tf.nn.softmax, name='prob') # 3. define loss with tf.name_scope('loss'): # tf.losses.sparse_softmax_cross_entropy() label is not one_hot and dtype is int* # xentropy = tf.losses.sparse_softmax_cross_entropy(labels=tf.argmax(y, axis=1), logits=logits) # tf.nn.sparse_softmax_cross_entropy_with_logits() label is not one_hot and dtype is int* # xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y, axis=1), logits=logits) # loss = tf.reduce_mean(xentropy) loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot # 4. define optimizer learning_rate = 0.01 with tf.name_scope('train'): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for batch normalization with tf.control_dependencies(update_ops): # optimizer_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) threshold = 1.0 optimizer = tf.train.GradientDescentOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(loss) capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var) for grad, var in grads_and_vars] optimizer_op = optimizer.apply_gradients(capped_gvs) with tf.name_scope('eval'): correct = tf.nn.in_top_k(logits, tf.argmax(y, axis=1), 1) # 目标是否在前K个预测中, label's dtype is int* accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # 5. initialize init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) saver = tf.train.Saver() # ================= print([v.name for v in tf.trainable_variables()]) print([v.name for v in tf.global_variables()]) # ================= # 5. train & test n_epochs = 20 n_batches = 50 batch_size = 50 with tf.Session() as sess: sess.run(init_op) for epoch in range(n_epochs): for iteration in range(mnist.train.num_examples // batch_size): X_batch, y_batch = mnist.train.next_batch(batch_size) sess.run(optimizer_op, feed_dict={X: X_batch, y: y_batch, is_training:True}) # ================= # for grad, var in grads_and_vars: # grad = grad.eval(feed_dict={X: X_batch, y: y_batch, is_training:True}) # var = var.eval() # ================= acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch, is_training:False}) # 最后一个 batch 的 accuracy acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False}) loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False}) print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test, "Test loss:", loss_test) save_path = saver.save(sess, "./my_model_final.ckpt") with tf.Session() as sess: sess.run(init_op) saver.restore(sess, "./my_model_final.ckpt") acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False}) loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False}) print("Test accuracy:", acc_test, ", Test loss:", loss_test)
下面我们来看看上面这个例子里所涉及的一些东西
compute_gradients
compute_gradients 是任何一个优化器都有的方法:
compute_gradients( loss, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None )
计算 loss 中可训练的 var_list 中的梯度。
相当于minimize() 的第一步,返回 (gradient, variable) 列表。
获得了梯度后我们就可以手动进行梯度裁剪了,下面这句话就是将梯度限制到 [-threshold, threshold] 的范围内:
capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var) for grad, var in grads_and_vars]
apply_gradients
apply_gradients 同样是任何一个优化器都有的方法:
apply_gradients( grads_and_vars, global_step=None, name=None )
minimize() 的第二部分,返回一个执行梯度更新的 ops。
Max-Norm Regularization
对于每个节点,max-norm regularization 会对权重
实例代码:
import tensorflow as tf # ================= def max_norm_regularizer(threshold=1.0, axes=1, name="max_norm", collection="max_norm"): def max_norm(weights): clipped = tf.clip_by_norm(weights, clip_norm=threshold, axes=axes) clip_weights = tf.assign(weights, clipped, name=name) tf.add_to_collection(collection, clip_weights) return None # there is no regularization loss term return max_norm max_norm_reg = max_norm_regularizer(threshold=1.0) # ================= # 1. create data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) X = tf.placeholder(tf.float32, shape=(None, 784), name='X') y = tf.placeholder(tf.int32, shape=(None), name='y') is_training = tf.placeholder(tf.bool, None, name='is_training') # 2. define network he_init = tf.contrib.layers.variance_scaling_initializer() with tf.name_scope('dnn'): hidden1 = tf.layers.dense(X, 300, kernel_initializer=he_init, kernel_regularizer=max_norm_reg, name='hidden1') # hidden1 = tf.layers.batch_normalization(hidden1, momentum=0.9) hidden1 = tf.nn.relu(hidden1) hidden2 = tf.layers.dense(hidden1, 100, kernel_initializer=he_init, kernel_regularizer=max_norm_reg, name='hidden2') # hidden2 = tf.layers.batch_normalization(hidden2, training=is_training, momentum=0.9) hidden2 = tf.nn.relu(hidden2) logits = tf.layers.dense(hidden2, 10, kernel_initializer=he_init, name='output') # 3. define loss with tf.name_scope('loss'): loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot # 4. define optimizer learning_rate_init = 0.01 global_step = tf.Variable(0, trainable=False) with tf.name_scope('train'): learning_rate = tf.train.polynomial_decay( # 多项式衰减 learning_rate=learning_rate_init, # 初始学习率 global_step=global_step, # 当前迭代次数 decay_steps=22000, # 在迭代到该次数实际,学习率衰减为 learning_rate * dacay_rate end_learning_rate=learning_rate_init / 10, # 最小的学习率 power=0.9, cycle=False ) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for batch normalization with tf.control_dependencies(update_ops): optimizer_op = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=0.9).minimize( loss=loss, var_list=tf.trainable_variables(), global_step=global_step # 不指定的话学习率不更新 ) # ================= clip gradient # threshold = 1.0 # optimizer = tf.train.GradientDescentOptimizer(learning_rate) # grads_and_vars = optimizer.compute_gradients(loss) # capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var) # for grad, var in grads_and_vars] # optimizer_op = optimizer.apply_gradients(capped_gvs) # ================= with tf.name_scope('eval'): correct = tf.nn.in_top_k(logits, tf.argmax(y, axis=1), 1) # 目标是否在前K个预测中, label's dtype is int* accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # 5. initialize init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) saver = tf.train.Saver() # ================= clip_all_weights = tf.get_collection("max_norm") # ================= # 6. train & test n_epochs = 20 batch_size = 50 with tf.Session() as sess: sess.run(init_op) # saver.restore(sess, './my_model_final.ckpt') for epoch in range(n_epochs): for iteration in range(mnist.train.num_examples // batch_size): X_batch, y_batch = mnist.train.next_batch(batch_size) sess.run([optimizer_op, learning_rate], feed_dict={X: X_batch, y: y_batch, is_training:True}) sess.run(clip_all_weights) # ================= check gradient # for grad, var in grads_and_vars: # grad = grad.eval(feed_dict={X: X_batch, y: y_batch, is_training:True}) # var = var.eval() # ================= learning_rate_cur = learning_rate.eval() acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch, is_training:False}) # 最后一个 batch 的 accuracy acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False}) loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False}) print(epoch, "Current learning rate:", learning_rate_cur, "Train accuracy:", acc_train, "Test accuracy:", acc_test, "Test loss:", loss_test) save_path = saver.save(sess, "./my_model_final.ckpt")
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用
2018-10-11 win10 + cuda8.0 + caffe SSD + vs2015 + python3
2017-10-11 python tricks