《剑指offer》面试题32----从1到n整数中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数。例如输入12,从1到12这些整数中包含1的数字有1,10,11和12,1一共出现了5次。
解法一:不考虑时间效率的解法(略)
ps:我感觉是个程序员都能想到这第一种解法,时间复杂度O(nlogn)。这个方法没有什么意义,但是简单易懂,去小公司足够了,这里不讲了。
解法二:分析数字规律,时间复杂度O(logn).
这是我写这篇文章的初衷。《剑指offer》洋洋洒洒写了几十行代码,然而在leetcode上大神却只用了5行!当天晚上智障,脑子全是浆糊,竟然没有看懂什么意思=。=,我一度怀疑智商受到了碾压。然而在今天睡眠比较充足,头脑比较清醒的情况下终于理顺了思路~
其实这道题目很多地方都有讲,包括《编程之美》,但是也有20行左右的代码,没耐心了。其它的一些帖子讲的乱七八糟,这对于我这种爱简洁,爱干净,还有严重强迫症的人是不能忍的,下面强迫症患者要开始装逼了。。。
先上代码:
1 package test; 2 3 public class Question_32 { 4 public static int countDigitOne(int n) { 5 int ones = 0; 6 for (long m = 1; m <= n; m *= 10) 7 ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0); 8 return ones; 9 } 10 11 public static void main(String[] args) { 12 // TODO Auto-generated method stub 13 System.out.println(countDigitOne(12)); 14 15 } 16 17 }
核心代码只有line4~line9。leetcode原链接: https://discuss.leetcode.com/topic/18054/4-lines-o-log-n-c-java-python 牛客网链接: https://www.nowcoder.com/questionTerminal/bd7f978302044eee894445e244c7eee6 。
装逼模式开启:
我们从一个5位的数字讲起,先考虑其百位为1的情况。分3种情况讨论:
百位数字>=2 example: 31256 当其百位为>=时,有以下这些情况满足(为方便起见,计312为a,56为b):
100 ~ 199
1100 ~ 1199
.....
31100 ~ 31199
余下的都不满足!
因此,百位>=2的5位数字,其百位为1的情况有(a/10+1)*100个数字 (a/10+1)=>对应于 0 ~ 31,且每一个数字,对应范围是100个数(末尾0-99)
百位数字 ==1 example: 31156 当其百位为1时,有以下这些情况满足:
100 ~ 199
1100 ~ 1199
......
30100 ~ 30199
31100 ~ 31156
因此,百位为1的5位数字,共有(a/10)*100+(b+1)
百位数字 ==0 example: 31056 当其百位为0时,有以下这些情况满足:
100 ~ 199
1100 ~ 1199
30100 ~ 30199
其余都不满足
因此,百位数为0的5位数字,共有(a/10)*100个数字满足要求
我们可以进一步统一以下表达方式,即当百位>=2或=0时,有[(a+8)/10]*100,当百位=1时,有[(a+8)/10]*100+(b+1)。用代码表示就是: [(a+8)/10]*100+(a%10==1)?(b+1):0;
为什么要加8呢?因为只有大于2的时候才会产生进位等价于(a/10+1),当等于0和1时就等价于(a/10)。另外,等于1时要单独加上(b+1),这里我们用a对10取余是否等于1的方式判断该百位是否为1。
Question:有缺陷或逻辑错误吗?
有人可能会有疑惑,比如11100,这个数在考虑百位为1的时候算作了一次,在考虑千位的时候也算了一次,在考虑万位为1的时候又算了一次,一共计了3次,这不是明显重复吗?
我的回答是,不重复!
分析:题目中要我们统计出现的1的个数,那么我们可以看到11100一共是3个1,如果剔除了重复的情况只考虑一次才会是问题。换言之,在计算从1到n整数中1的出现次数时,我们把10位出现1的情况个数加上百位出现1的情况个数一直加到最高位是1的情况的个数,这里面一个数可能被统计过多次;11100百位出现1,千位和万位都为1,那么被重复统计了3次
代码分析:
1 public static int countDigitOne(int n) { 2 int ones = 0; 3 for (long m = 1; m <= n; m *= 10) 4 ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0); 5 return ones; 6 }
for (long m = 1; m <= n; m *= 10) 在这里的作用是,从个位开始考虑,再到十位,百位,千位,一直到超出这个数!为什么m要用long型呢?因为n可能没有超过整型的表达范围(int刚好可以表示n),而10*m恰恰有可能刚刚超过!ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0); 这里ones用于表示1的个数,当m=100时,n/m其实代表的是a,而n%m代表的是b,此时考虑的是百位为1的情况;当m=1000,自然考虑的就是千位等于1的情况了~ 至于为什么加8,那个三目运算符是干嘛子用的上面都已经讲过了。
最后,总结一下。这道题网上答案太多了,但是我觉得只有这种方法最让人眼前一亮。抖机灵的不少,比如用java字符串处理的,自以为很厉害,其实根本没含金量(时间复杂度O(nlogn)啊!)关键是这还有赞同的,不知道算法分析是怎么学的。《剑指offer》和《编程之美》的答案可能曾经是最佳,但是现在被更好的方法替换了,而作者并不知情。一本好书看3遍,胜过3本好书看一遍!相信一个月后,我对这道题的印象可能就没有多少了,及时整理,利人利己,温故而知新~
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步