ss

 

 1 a > 1,limn→∞√nα- = 1.

n√--
 a = 1 + y n,yn > 0(n=1,2,3,...),应用

a = (1 + yn)n = 1 + nyn + ...+ ynn > 1 + yn

, 便得到

|√ --  |         a- 1
| n a- 1| = |yn| <-----
                  n

定的ϵ > 0,N = [a-1
  ϵ],n > N

|√ --  |   a-  1
| n a- 1| <-----< ϵ
             n

limn→∞√na-- = 1

 2

 lim  n√n-= 1
n→ ∞

√--
nn = 1 + y n,yn > 0(n = 1,2,3,...),应用

n = (1 + yn)n = 1 + nyn + n-(n---1)y2 + ...+ yn> 1 + n(n---1)y2
                            2    n        n         2     n

得到

                ∘ --
|√--   |          2
| nn - 1| = |yn| < n

定的ϵ > 0,N = [-2
ϵ2],

n > N

          ∘ --
|| n√-   ||     2-
  n - 1 <    n < ϵ

limn→∞√nn-- = 1

∥∥a  b∥∥
∥∥    ∥∥
∥c  d∥

 0.1 If there are two or more ways to someone will do it.

posted @ 2013-05-07 11:07  xtypeu  阅读(93)  评论(0编辑  收藏  举报