WIN7环境人脸检测及识别python实现系列(3)——为模型训练准备人脸数据
#-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx,catch_pic_num,path_name): cv2.namedWindow(window_name) #视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW) #告诉OpenCV使用人脸识别分类器 classfier = cv2.CascadeClassifier("d:/python/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml") #识别出人脸后要画的边框的颜色,RGB格式 color = (0, 255, 0) num=0 while cap.isOpened(): ok, frame = cap.read() #读取一帧数据 if not ok: break #将当前帧转换成灰度图像 grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数 faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(faceRects) > 0: #大于0则检测到人脸 for faceRect in faceRects: #单独框出每一张人脸 x, y, w, h = faceRect cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2) #将当前帧保存为图片 img_name = '%s/%d.jpg'%(path_name, num) image = frame[y - 10: y + h + 10, x - 10: x + w + 10] cv2.imwrite(img_name, image) num += 1 if num >= (catch_pic_num): #如果超过指定最大保存数量退出循环 break #画出矩形框 cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2) #显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着 font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame,'num:%d' % (num),(x + 30, y + 30), font, 1, (255,0,255),4) #超过指定最大保存数量结束程序 if num >= (catch_pic_num): break #显示图像 cv2.imshow(window_name, frame) c = cv2.waitKey(10) if c & 0xFF == ord('q'): break #释放摄像头并销毁所有窗口 cap.release() cv2.destroyAllWindows() if __name__ == '__main__': CatchUsbVideo("识别人脸区域", 0 + cv2.CAP_DSHOW,100,'mypicture')