概述
1 . 不是数据结构,不会保存数据。
2. 不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素)
3. 惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。
分类
中间操作:
无状态:unordered()/filter()/map()/mapToInt()/mapToLong()/mapToDouble()/flatMap()/flatMapToInt()/flatMapToLong()/flatMapToDouble()/peek()
有状态:distinct()/sorted()/limit()/skip()
结束操作:
非短路操作:forEach()/forEachOrdered()/toArray()/reduce()/collect()/max()/min()/count()
短路操作:anyMatch()/allMatch()/noneMatch()/findFirst()/findAny()
无状态:指元素的处理不受之前元素的影响
有状态:指该操作只有拿到所有元素之后才能继续下去
非短路操作:指必须处理所有元素才能得到最终结果
短路操作:指遇到某些符合条件的元素就可以得到最终结果,如 A || B,只要A为true,则无需判断B的结果
具体用法
1. 流的常用创建方法
1.1 使用Collection下的 stream() 和 parallelStream() 方法
list.stream();list.parallelStream();
1.2 使用Arrays 中的 stream() 方法,将数组转成流
Arrays.stream(nums);
1.3 使用Stream中的静态方法:of()、iterate()、generate()
Stream<Integer> stream1 = Stream.of(1,2,3);
Stream<Integer> stream2 = Stream.iterate(0,(x)->x+2).limit(3);//0,2,4
Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
1.4 使用 BufferedReader.lines() 方法,将每行内容转成流
BufferedReader reader = new BufferedReader(new FileReader("E:\\1.txt"));
Stream<String> lineStream = reader.lines();
1.5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流
Pattern pattern = Pattern.compile(",");
Stream<String> stringStream = pattern.splitAsStream("a,b,c");
2. 流的中间操作
2.1 筛选与切片
filter:过滤流中的某些元素
limit(n):获取n个元素
skip(n):跳过n元素,配合limit(n)可实现分页
distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素
Stream<Integer> stream1 = Stream.of(1,2,3,3,4,5,6);
Stream<Integer> stream2 = stream1.filter(x->x>2).distinct().skip(2).limit(2);//5,6
2.2 映射
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
List<String> list = Arrays.asList("a,b,c","1,2,3");
//将每个元素转成一个新的且不带逗号的元素
Stream<Student> stus = list.stream().map(s->new Student(s));
Stream<String> s1 = list.stream().map(s -> s.replaceAll(",",""));//abc 123
Stream<String> s3 = list.stream().flatMap(x->{String[] split = s.split(",");Stream<String> s2 = Arrays.stream(split);return s2;});//a b c 1 2 3
2.3 排序
sorted():自然排序,流中元素需实现Comparable接口
sorted(Comparator com):定制排序,自定义Comparator排序器
List<String> list = Arrays.asList("aa", "ff", "dd"); //String 类自身已实现Compareable接口 list.stream().sorted().forEach(System.out::println);// aa dd ff Student s1 = new Student("aa", 10); Student s2 = new Student("bb", 20); Student s3 = new Student("aa", 30); Student s4 = new Student("dd", 40); List<Student> studentList = Arrays.asList(s1, s2, s3, s4); //自定义排序:先按姓名升序,姓名相同则按年龄升序 studentList.stream().sorted( (o1, o2) -> { if (o1.getName().equals(o2.getName())) { return o1.getAge() - o2.getAge(); } else { return o1.getName().compareTo(o2.getName()); } } ).forEach(System.out::println);
2.4 消费
peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。
Student s1 = new Student("aa", 10); Student s2 = new Student("bb", 20); List<Student> studentList = Arrays.asList(s1, s2); studentList.stream().peek(o -> o.setAge(100)).forEach(System.out::println); //结果: Student{name='aa', age=100} Student{name='bb', age=100}
3. 流的终止操作
3.1 匹配、聚合操作
allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false
noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false
anyMatch:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false
findFirst:返回流中第一个元素
findAny:返回流中的任意元素
count:返回流中元素的总个数
max:返回流中元素最大值
min:返回流中元素最小值
3.2 规约操作
Optional<T> reduce(BinaryOperator<T> accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
T reduce(T identity, BinaryOperator<T> accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。
<U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner):在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。
在并行流(parallelStream)中,我们知道流被fork join出多个线程进行执行,此时每个线程的执行流程就跟第二个方法reduce(identity,accumulator)一样,而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法reduce(accumulator)流程进行规约。
//经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16 List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24); Integer v = list.stream().reduce((x1, x2) -> x1 + x2).get(); System.out.println(v); // 300 Integer v1 = list.stream().reduce(10, (x1, x2) -> x1 + x2); System.out.println(v1); //310 Integer v2 = list.stream().reduce(0, (x1, x2) -> { System.out.println("stream accumulator: x1:" + x1 + " x2:" + x2); return x1 - x2; }, (x1, x2) -> { System.out.println("stream combiner: x1:" + x1 + " x2:" + x2); return x1 * x2; }); System.out.println(v2); // -300 Integer v3 = list.parallelStream().reduce(0, (x1, x2) -> { System.out.println("parallelStream accumulator: x1:" + x1 + " x2:" + x2); return x1 - x2; }, (x1, x2) -> { System.out.println("parallelStream combiner: x1:" + x1 + " x2:" + x2); return x1 * x2; }); System.out.println(v3); //197474048
3.3 收集操作
collect:接收一个Collector实例,将流中元素收集成另外一个数据结构。
Student s1 = new Student("aa", 10,1); Student s2 = new Student("bb", 20,2); Student s3 = new Student("cc", 10,3); List<Student> list = Arrays.asList(s1, s2, s3); //装成list List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10] //转成set Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10] //转成map,注:key不能相同,否则报错 Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10} //字符串分隔符连接 String joinName = list.stream().map(Student::getName).collect(Collectors.joining(",", "(", ")")); // (aa,bb,cc) //聚合操作 //1.学生总数 Long count = list.stream().collect(Collectors.counting()); // 3 //2.最大年龄 (最小的minBy同理) Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20 //3.所有人的年龄 Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40 //4.平均年龄 Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334 // 带上以上所有方法 DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge)); System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage()); //分组 Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge)); //多重分组,先根据类型分再根据年龄分 Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge))); //分区 //分成两部分,一部分大于10岁,一部分小于等于10岁 Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10)); //规约 Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40
来源:https://blog.csdn.net/y_k_y/article/details/84633001