[2019.3.11]BZOJ2656 [Zjoi2012]数列(sequence)

首选,对于\(N\)为偶数,我们可以不停地把它除以2,于是我们只用考虑\(N\)为奇数的情况。

我们有\(A_{2i+1}=A_i+A_{i+1}\)

于是我们设\(B_i=A_i+A_{i+1}\)

\(i\)为奇数

\(B_i=A_i+A_{i+1}=A_{\frac{i}{2}}+A_{\frac{i}{2}+1}+A_{\frac{2}{i}+1}=A_{\frac{i}{2}}+2A_{\frac{i}{2}+1}\)

\(i\)为偶数

\(B_i=A_i+A_{i+1}=A_{\frac{i}{2}}+A_{\frac{i}{2}}+A_{\frac{i}{2}+1}=2A_{\frac{i}{2}}+A_{\frac{i}{2}+1}\)

但是我们发现这并没有什么卵用

但是这样就启发我们每次可以把\(i\)变成\(\frac{i}{2}\)

于是我们设\(f(i,j,k)=jA_i+kA_{i+1}\)

于是当\(i\)为奇数

\(f_{i,j,k}=jA_i+kA_{i+1}=jA_{\frac{i}{2}}+jA_{\frac{i}{2}+1}+kA_{\frac{2}{i}+1}=jA_{\frac{i}{2}}+(j+k)A_{\frac{i}{2}+1}=f_{\frac{i}{2},j,j+k}\)

\(i\)为偶数

\(f_{i,j,k}=jA_i+kA_{i+1}=jA_{\frac{i}{2}}+kA_{\frac{i}{2}}+kA_{\frac{i}{2}+1}=(j+k)A_{\frac{i}{2}}+kA_{\frac{i}{2}+1}=f_{\frac{i}{2},j+k,k}\)

写一个高精度模板就好了。

时间复杂度\(O(\log_2n\log_{10}n)\)

code:

(主函数只有10行,高精模板有63行QWQ)

#include<bits/stdc++.h>
#define UN XRY_template::unsigned_NUM<10000,30>
using namespace std;
namespace XRY_template{
	template<int base,int size>class unsigned_NUM{//base=pow(10,x) if you want to press x position
		typedef unsigned_NUM<base,size> uN;
		private:
			int v[size],sz;
			string TMP;
		public:
			void clear(){
				memset(v,0,sizeof(v)),sz=0;
			}
			unsigned_NUM(int y=0){
				clear();
				while(y)v[++sz]=y%base,y/=base;
			}
			uN operator+(const uN&y)const{
				unsigned_NUM tmp;
				int w=0;
				tmp.sz=sz>y.sz?sz:y.sz;
				for(int i=1;i<=tmp.sz;++i)tmp.v[i]=v[i]+y.v[i]+w,w=tmp.v[i]/base,tmp.v[i]%=base,w&&i==tmp.sz?++tmp.sz:0;
				return tmp;
			}
			uN operator-(const uN&y)const{
				uN tmp;
				tmp.sz=sz>y.sz?sz:y.sz;
				for(int i=1;i<=tmp.sz;++i)tmp.v[i]+=v[i]-y.v[i],tmp.v[i]<0?tmp.v[i]+=base,--tmp.v[i+1]:0;
				while(tmp.sz&&!tmp.v[tmp.sz])--tmp.sz;
				return tmp;
			}
			uN operator/(const int&y)const{
				uN tmp;
				tmp=*this;
				int w=0;
				for(int i=tmp.sz;i>=1;--i)tmp.v[i]+=base*w,w=tmp.v[i]%y,tmp.v[i]/=y;
				while(tmp.sz&&!tmp.v[tmp.sz])--tmp.sz;
				return tmp;
			}
			/*--------------------------------------*/
			bool operator==(const uN&y)const{
				if(sz!=y.sz)return false;
				for(int i=1;i<=sz;++i)if(v[i]!=y.v[i])return false;
				return true;
			}
			/*--------------------------------------*/
			bool odd()const{
				return v[1]&1;
			}
			void scan(){
				clear();
				cin>>TMP,sz=1;
				int siz=TMP.size()-1,bs=1;
				while(~siz)v[sz]+=bs*(TMP[siz--]-'0'),bs=(bs*10<base?bs*10:(++sz,bs=1));
				if(!v[1])sz=0;
			}
			void print()const{
				if(!sz)return(void)putchar('0');
				int bs=base/10;
				for(int i=sz;i>=1;--i,bs=base/10){
					while(bs>v[i])i!=sz?putchar('0'):0,bs/=10;
					while(bs)putchar(v[i]/bs%10+'0'),bs/=10;
				}
			}
	};
}
int T;
UN n,one;
UN f(UN x,UN y,UN z){
	if(x==0)return z;
	return x.odd()?f(x/2,y,y+z):f(x/2,y+z,z);
}
int main(){
	one=1;
	scanf("%d",&T);
	while(T--){
		n.scan();
		while(!n.odd())n=n/2;
		f(n/2,one,one).print(),putchar('\n');
	}	
	return 0;
}
posted @ 2019-03-17 18:23  xryjr233  阅读(121)  评论(0编辑  收藏  举报