[2018.12.9]BZOJ2153 设计铁路

方便计算,我们将点B放到最右边,所有点向左放,将最左边点的位置标为1。如样例,变为

1 3

21 3

1 2

6 5

而B在26的位置。

\(dp_i\)为在点\(i\)设置车站,之前随便的最小花费;\(costs_i\)为所有\(i\)位置之前的人从出发点走到\(i\)的分数;\(pn_i\)\(i\)位置及\(i\)位置之前的人数。

则在位置\([l+1,r]\)之间的人走到\(r\)的分数为\(costs_r-costs_l-pn_l\times(r-l)\)

则状态转移方程为\(dp_i=min_{j=1}^{i-1}\{dp_j+costs_i-costs_j-pn_j\times(i-j)+m\}\)

将与\(j\)无关的项移出,展开,得\(dp_i=min_{j=1}^{i-1}\{dp_j-costs_j-pn_j\times i+pn_j\times j\}+costs_i+m\)

此时如果把内部变成直线解析式,\(k\)应等于\(-pn_j\),单调递减。

于是我们把式子变成:

\(dp_i=-max_{j=1}^{i-1}\{-dp_j+costs_j+pn_j\times i-pn_j\times j\}+costs_i+m\)

\(k=pn_j\),\(b=-dp_j+costs_j-pn_j\times j\)

原式\(=ki+b\)

套上斜律优化即可。

斜率优化

code:

#include<bits/stdc++.h>
using namespace std;
struct village{
	int t,r;
}v[40010];
int n,m,d,nw,line[1000010],l,r;
long long costs[1000010],pn[1000010],dp[1000010],k[1000010],b[1000010];
bool cmp(village x,village y){
	return x.t<y.t;
}
long long val(int l1,int x){
	return k[l1]*x+b[l1];
}
bool cov(int l1,int l2,int l3){
	return (b[l2]-b[l1])*(k[l1]-k[l3])>=(b[l3]-b[l1])*(k[l1]-k[l2]);
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)scanf("%d%d",&v[i].t,&v[i].r),d=max(d,v[i].t+1);
	for(int i=1;i<=n;i++)v[i].t=d-v[i].t;
	sort(v+1,v+n+1,cmp);
	nw=1;
	for(int i=1;i<=d;i++){
		pn[i]=pn[i-1];
		while(v[nw].t==i)pn[i]+=v[nw++].r;
		costs[i]=costs[i-1]+pn[i-1];
	}
	l=r=1;
	for(int i=1;i<=d;i++){
		while(l<r&&val(line[l],i)<=val(line[l+1],i))l++;
		dp[i]=-val(line[l],i)+costs[i]+m;
		k[i]=pn[i];
		b[i]=costs[i]-pn[i]*i-dp[i];
		while(l<r&&cov(i,line[r-1],line[r]))r--;
		line[++r]=i;
	}
	printf("%lld",dp[d]-m);
	return 0;
}
posted @ 2019-03-15 14:32  xryjr233  阅读(114)  评论(0编辑  收藏  举报