Linear Optimization(借助ortools)
优化问题的要素
- objective,欲优化的量。比如某函数的最大值或最小值。
- constraints, 约束变量。基于问题的特定需求,对可行解进行约束。
线性优化用于计算一组线性关系建模问题的最优解。
谷歌提供的开源库Glop可用来求解该问题。
解决问题步骤
- 声明求解器
- 创建变量
- 定义约束
- 定义目标函数
- 调用求解器
- 展示结果
eg1:
- objective: maximize(x+y)
- constraints:
- 0 ≤ x ≤ 1
- 0 ≤ y ≤ 2
from ortools.linear_solver import pywraplp
def main():
solver = pywraplp.Solver('SolveSimpleSystem',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
# Create the variables x and y.
x = solver.NumVar(0, 1, 'x')
y = solver.NumVar(0, 2, 'y')
# Create the objective function, x + y.
objective = solver.Objective()
objective.SetCoefficient(x, 1)
objective.SetCoefficient(y, 1)
objective.SetMaximization()
# Call the solver and display the results.
solver.Solve()
print('Solution:')
print('x = ', x.solution_value())
print('y = ', y.solution_value())
if __name__ == '__main__':
main()
运行得
Solution:
x = 1.0
y = 2.0
eg2:
- objective: maximize(3x + 4y)
- constraints:
- x + 2y ≤ 14
- 3x – y ≥ 0
- x – y ≤ 2
"""Linear optimization example"""
from ortools.linear_solver import pywraplp
def main():
# Instantiate a Glop solver, naming it LinearExample.
solver = pywraplp.Solver('LinearExample',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
# Create the two variables and let them take on any value.
x = solver.NumVar(-solver.infinity(), solver.infinity(), 'x')
y = solver.NumVar(-solver.infinity(), solver.infinity(), 'y')
# Constraint 1: x + 2y <= 14.
constraint1 = solver.Constraint(-solver.infinity(), 14)
constraint1.SetCoefficient(x, 1)
constraint1.SetCoefficient(y, 2)
# Constraint 2: 3x - y >= 0.
constraint2 = solver.Constraint(0, solver.infinity())
constraint2.SetCoefficient(x, 3)
constraint2.SetCoefficient(y, -1)
# Constraint 3: x - y <= 2.
constraint3 = solver.Constraint(-solver.infinity(), 2)
constraint3.SetCoefficient(x, 1)
constraint3.SetCoefficient(y, -1)
# Objective function: 3x + 4y.
objective = solver.Objective()
objective.SetCoefficient(x, 3)
objective.SetCoefficient(y, 4)
objective.SetMaximization()
# Solve the system.
solver.Solve()
opt_solution = 3 * x.solution_value() + 4 * y.solution_value()
print('Number of variables =', solver.NumVariables())
print('Number of constraints =', solver.NumConstraints())
# The value of each variable in the solution.
print('Solution:')
print('x = ', x.solution_value())
print('y = ', y.solution_value())
# The objective value of the solution.
print('Optimal objective value =', opt_solution)
if __name__ == '__main__':
main()
运行得
Number of variables = 2
Number of constraints = 3
Solution:
x = 5.999999999999998
y = 3.9999999999999996
Optimal objective value = 33.99999999999999
The Stigler diet
from __future__ import print_function
from ortools.linear_solver import pywraplp
def main():
# Commodity, Unit, 1939 price (cents), Calories, Protein (g), Calcium (g), Iron (mg),
# Vitamin A (IU), Thiamine (mg), Riboflavin (mg), Niacin (mg), Ascorbic Acid (mg)
data = [
['Wheat Flour (Enriched)', '10 lb.', 36, 44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0],
['Macaroni', '1 lb.', 14.1, 11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0],
['Wheat Cereal (Enriched)', '28 oz.', 24.2, 11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0],
['Corn Flakes', '8 oz.', 7.1, 11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0],
['Corn Meal', '1 lb.', 4.6, 36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0],
['Hominy Grits', '24 oz.', 8.5, 28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0],
['Rice', '1 lb.', 7.5, 21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0],
['Rolled Oats', '1 lb.', 7.1, 25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0],
['White Bread (Enriched)', '1 lb.', 7.9, 15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0],
['Whole Wheat Bread', '1 lb.', 9.1, 12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0],
['Rye Bread', '1 lb.', 9.1, 12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0],
['Pound Cake', '1 lb.', 24.8, 8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0],
['Soda Crackers', '1 lb.', 15.1, 12.5, 288, 0.5, 50, 0, 0, 0, 0, 0],
['Milk', '1 qt.', 11, 6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177],
['Evaporated Milk (can)', '14.5 oz.', 6.7, 8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60],
['Butter', '1 lb.', 30.8, 10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0],
['Oleomargarine', '1 lb.', 16.1, 20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0],
['Eggs', '1 doz.', 32.6, 2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0],
['Cheese (Cheddar)', '1 lb.', 24.2, 7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0],
['Cream', '1/2 pt.', 14.1, 3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17],
['Peanut Butter', '1 lb.', 17.9, 15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0],
['Mayonnaise', '1/2 pt.', 16.7, 8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0],
['Crisco', '1 lb.', 20.3, 20.1, 0, 0, 0, 0, 0, 0, 0, 0],
['Lard', '1 lb.', 9.8, 41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0],
['Sirloin Steak', '1 lb.', 39.6, 2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0],
['Round Steak', '1 lb.', 36.4, 2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0],
['Rib Roast', '1 lb.', 29.2, 3.4, 213, 0.1, 33, 0, 0, 2, 0, 0],
['Chuck Roast', '1 lb.', 22.6, 3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0],
['Plate', '1 lb.', 14.6, 8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0],
['Liver (Beef)', '1 lb.', 26.8, 2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525],
['Leg of Lamb', '1 lb.', 27.6, 3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0],
['Lamb Chops (Rib)', '1 lb.', 36.6, 3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0],
['Pork Chops', '1 lb.', 30.7, 3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0],
['Pork Loin Roast', '1 lb.', 24.2, 4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0],
['Bacon', '1 lb.', 25.6, 10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0],
['Ham, smoked', '1 lb.', 27.4, 6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0],
['Salt Pork', '1 lb.', 16, 18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0],
['Roasting Chicken', '1 lb.', 30.3, 1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46],
['Veal Cutlets', '1 lb.', 42.3, 1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0],
['Salmon, Pink (can)', '16 oz.', 13, 5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0],
['Apples', '1 lb.', 4.4, 5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544],
['Bananas', '1 lb.', 6.1, 4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498],
['Lemons', '1 doz.', 26, 1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952],
['Oranges', '1 doz.', 30.9, 2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998],
['Green Beans', '1 lb.', 7.1, 2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862],
['Cabbage', '1 lb.', 3.7, 2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369],
['Carrots', '1 bunch', 4.7, 2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608],
['Celery', '1 stalk', 7.3, 0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313],
['Lettuce', '1 head', 8.2, 0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449],
['Onions', '1 lb.', 3.6, 5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184],
['Potatoes', '15 lb.', 34, 14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522],
['Spinach', '1 lb.', 8.1, 1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755],
['Sweet Potatoes', '1 lb.', 5.1, 9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912],
['Peaches (can)', 'No. 2 1/2', 16.8, 3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196],
['Pears (can)', 'No. 2 1/2', 20.4, 3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81],
['Pineapple (can)', 'No. 2 1/2', 21.3, 2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399],
['Asparagus (can)', 'No. 2', 27.7, 0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272],
['Green Beans (can)', 'No. 2', 10, 1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431],
['Pork and Beans (can)', '16 oz.', 7.1, 7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0],
['Corn (can)', 'No. 2', 10.4, 5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218],
['Peas (can)', 'No. 2', 13.8, 2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370],
['Tomatoes (can)', 'No. 2', 8.6, 1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253],
['Tomato Soup (can)', '10 1/2 oz.', 7.6, 1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862],
['Peaches, Dried', '1 lb.', 15.7, 8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57],
['Prunes, Dried', '1 lb.', 9, 12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257],
['Raisins, Dried', '15 oz.', 9.4, 13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136],
['Peas, Dried', '1 lb.', 7.9, 20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0],
['Lima Beans, Dried', '1 lb.', 8.9, 17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0],
['Navy Beans, Dried', '1 lb.', 5.9, 26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0],
['Coffee', '1 lb.', 22.4, 0, 0, 0, 0, 0, 4, 5.1, 50, 0],
['Tea', '1/4 lb.', 17.4, 0, 0, 0, 0, 0, 0, 2.3, 42, 0],
['Cocoa', '8 oz.', 8.6, 8.7, 237, 3, 72, 0, 2, 11.9, 40, 0],
['Chocolate', '8 oz.', 16.2, 8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0],
['Sugar', '10 lb.', 51.7, 34.9, 0, 0, 0, 0, 0, 0, 0, 0],
['Corn Syrup', '24 oz.', 13.7, 14.7, 0, 0.5, 74, 0, 0, 0, 5, 0],
['Molasses', '18 oz.', 13.6, 9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0],
['Strawberry Preserves', '1 lb.', 20.5, 6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0]];
# Nutrient minimums.
nutrients = [
['Calories (1000s)', 3],
['Protein (grams)', 70],
['Calcium (grams)', 0.8],
['Iron (mg)', 12],
['Vitamin A (1000 IU)', 5],
['Vitamin B1 (mg)', 1.8],
['Vitamin B2 (mg)', 2.7],
['Niacin (mg)', 18],
['Vitamin C (mg)', 75]]
# Instantiate a Glop solver, naming it SolveStigler.
solver = pywraplp.Solver('SolveStigler',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
# Declare an array to hold our nutritional data.
food = [[]] * len(data)
# Objective: minimize the sum of (price-normalized) foods.
objective = solver.Objective()
for i in range(0, len(data)):
food[i] = solver.NumVar(0.0, solver.infinity(), data[i][0])
objective.SetCoefficient(food[i], 1)
objective.SetMinimization()
# Create the constraints, one per nutrient.
constraints = [0] * len(nutrients)
for i in range(0, len(nutrients)):
constraints[i] = solver.Constraint(nutrients[i][1], solver.infinity())
for j in range(0, len(data)):
constraints[i].SetCoefficient(food[j], data[j][i+3])
# Solve!
status = solver.Solve()
if status == solver.OPTIMAL:
# Display the amounts (in dollars) to purchase of each food.
price = 0
num_nutrients = len(data[i]) - 3
nutrients = [0] * (len(data[i]) - 3)
for i in range(0, len(data)):
price += food[i].solution_value()
for nutrient in range(0, num_nutrients):
nutrients[nutrient] += data[i][nutrient+3] * food[i].solution_value()
if food[i].solution_value() > 0:
print('%s = %f' % (data[i][0], food[i].solution_value()))
print('Optimal annual price: $%.2f' % (365 * price))
else: # No optimal solution was found.
if status == solver.FEASIBLE:
print('A potentially suboptimal solution was found.')
else:
print('The solver could not solve the problem.')
if __name__ == '__main__':
main()