回溯法---->图的着色问题

图的着色问题

1、问题描述

图的m-着色判定问题——给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色?

图的m-着色优化问题——若一个图最少需要m种颜色才能使图中任意相邻的2个顶点着不同颜色,则称这个数m为该图的色数。求一个图的最小色数m的问题称为m-着色优化问题

2、找一个图的所有m-着色方案

procedure MCOLORING( k )

∥这是图着色的一个递归回溯算法。图G 用它的布尔邻接矩阵GRAP H(1∶n , 1∶  n)表示∥

∥它计算并打印出符合以下要求的全部解, 把整数1 , 2 , ⋯  ,m 分配给图中∥

∥各个结点且使相邻近的结点的有不同的整数。k 是下一个要着色结点的下标∥

global integer m, n , X(1∶  n)   boolean GRAPH (1∶n  , 1∶n)

integer k

loop ∥产生对X( k)所有的合法赋值∥

call  NEXTVALUE( k) ∥将一种合法的颜色分配给X( k) ∥

if  X( k) = 0 then exit endif ∥没有可用的颜色了∥

if  k = n

then  print ( X) ∥至多用了m 种颜色分配给n 个结点∥

else  call MCOLORING( k + 1 ) ∥所有m-着色方案均在此反复递归调用中产生∥

endif

repeat

end MCOLORING

在最初调用callMCOLORING(1)之前, 应对图的邻接矩阵置初值并对数组X置0值。在确定了X(1)到X(k-1)的颜色之后,过程NEXTVALUE从这m种颜色中挑选一种符合要求的颜色, 并把它分配给X(k) , 若无可用的颜色, 则返回X(k) = 0。

3、获取下一种颜色

procedure NEXTVALUE( k)

∥进入此过程前X(1) , ⋯ , X( k - 1 )已分得了区域[ 1 , m] 中的整数且相邻近的结点有不同的

整数。本过程在区域[0 ,m] 中给X( k )确定一个值:如果还剩下一些颜色, 它们与结点k 邻

接的结点分配的颜色不同, 就将其中最高标值的颜色分配给结点k ;如果没剩下可用的颜

色, 则置X( k) 为0∥

global integer m, n , X(1∶n)  boolean GRAP H(1∶n , 1∶  n)

integer j , k

loop

X(k) ←(X(k) + 1 ) mod (m + 1) ∥试验下一个最高标值的颜色∥

if X( k ) = 0 then return endif ∥全部颜色用完∥

for j←1 to n do ∥检查此颜色是否与邻近结点的那些颜色不同∥

if GRAPH( k , j ) and ∥如果( k , j )是一条边∥

X(k) = X(j) ∥并且邻近的结点有相同的颜色∥

then exit endif

repeat

if j = n + 1 then return endif ∥找到一种新颜色∥

repeat ∥否则试着找另一种颜色∥

end NEXTVALUE

4、例子

posted on 2013-05-16 10:12  小强斋太  阅读(1868)  评论(0编辑  收藏  举报

导航