动态规划---->0/1背包问题

0/1背包问题

有N件物品和一个容量为V的背包。第i件物品的重量是c[i],价值是w[i]。物品或者整件装入背包中, 或者根本不装入(即不能装入物品的一部分),求解将哪些物品装入背包可使价值总和最大。

最优性原理对0/1背包问题成立

算法基本思想

利用动态规划思想 ,子问题为:f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

其状态转移方程是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}   

解释一下上面的方程:“将前i件物品放入容量为v的背包中”这个子问题,如果只考虑第i件物品放或者不放,那么就可以转化为只涉及前i-1件物品的问题,即

1、如果不放第i件物品,则问题转化为“前i-1件物品放入容量为v的背包中”;

2、如果放第i件物品,则问题转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”(此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i])。

f[i][v]的值就是1、2中最大的那个值。

(注意:f[i][v]有意义当且仅当存在一个前i件物品的子集,其容量总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。)

例子1:

C[v]从物品i=1开始,循环到物品3,期间,每次逆序得到容量v在前i件物品时可以得到的最大值。

例子2:

  <---------------------------------------------------------------

 

fori=1..N

   forv=V..0

        f[v]=max{f[v],f[v-c[i]]+w[i]};

0/1背包

posted on   小强斋太  阅读(357)  评论(0编辑  收藏  举报

编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律

导航

< 2013年5月 >
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
2 3 4 5 6 7 8
点击右上角即可分享
微信分享提示