浅谈二维树状数组
①前置知识
静态二维前缀和:
①:预处理递推:f[ i ][ j ] = f[ i - 1 ][ j ] + f[ i ][ j -1 ] - f[ i - 1][ j - 1] + val[ i ][ j ].
②:左上角( X1 , Y1 ),右下角( X2 , Y2),这一段的区间和:f[ X2 ][ Y2] - f[ X2 ][ Y1 - 1] -f[ X1 - 1][ Y2 ] + f[ X1 - 1][Y1 - 1].
其实画一下图就很好理解了,具体详细教程从dalao的这篇blog: 传送门.
②二维树状数组
I.(单点修改,区间查询)
考虑一个点( X , Y )的存在,我们过这个点分别做X轴,Y轴的平行线,把这个点看做矩形的左上角,发现它只对它右下角的矩形才产生贡献.我们不由地联想到树状数组,用tree[ x ][ y ]的二维去维护点对'x下方', 'y右方'的贡献(想一想lowbit的作用).又因为树状数组求的和为前缀和,所以只要套静态二维前缀的的区间查询公式即可.
以LOJ的板子为例:
#include<iostream> #include<cstring> #include<cstdio> using namespace std; #define e exit(0) #define re register #define LL long long const int maxn = (1<<13); LL n,m,flag,x1,y1,tree[maxn][maxn]; inline long long fd(){ LL s=1,t=0; char c=getchar(); while(c<'0'||c>'9'){ if(c=='-') s=-1; c=getchar(); } while(c>='0'&&c<='9'){ t=t*10+c-'0'; c=getchar(); } return s*t; } LL lowbit(LL x){ return x&(-x); } void add(LL x,LL y,LL v){ for(re LL i=x;i<=n;i+=lowbit(i)) for(re LL j=y;j<=m;j+=lowbit(j)) tree[i][j] += v; } LL getans(LL x,LL y){ LL sum = 0; for(re LL i=x;i;i-=lowbit(i)) for(re LL j=y;j;j-=lowbit(j)) sum += tree[i][j]; return sum; } int main() { n = fd(),m = fd(); while((scanf("%lld%lld%lld",&flag,&x1,&y1)) != EOF){ if(flag == 1){ LL v = fd(); add(x1,y1,v); } else if(flag == 2){ LL x2 = fd(),y2 = fd(); LL ans = getans(x2,y2)-getans(x2,y1-1)-getans(x1-1,y2)+getans(x1-1,y1-1); printf("%lld\n",ans); } } return 0; }
II.(区间修改,区间查询)
①:一维树状数组的区间修改区间查询.
将单点修改,区间查询的差分技巧运用,容易发现 Σ(p , i =1)a[ i ] =Σ( p, i = 1)Σ(i , j = 1)cf[ j ].容易发现cf[ 1 ]用了p次,cf[ 2 ]用了p - 1次......那么上式可化简为Σ(p,i = 1)cf[ i ]*(p-i+1),将公式展开变成(p + 1)*Σ(p , i = 1)cf[ i ] - Σ(p , i =1)cf[ i ] * i.用树状数组去维护cf[ i ]与cf[ i ]*i的值即可.以LOJ例题为例:
#include<iostream> #include<cstring> #include<cstdio> using namespace std; #define e exit(0) #define re register #define LL long long const int maxn = 1e6+10; long long n,q,a[maxn],tree1[maxn],tree2[maxn]; inline LL fd(){ LL s = 1,t = 0; char c = getchar(); while(c<'0'||c>'9'){ if(c=='-') s=-1; c = getchar(); } while(c>='0'&&c<='9'){ t = t*10+c-'0'; c = getchar(); } return s*t; } LL lowbit(LL x){ return x&(-x); } void add(LL x,LL v){ for(re LL i=x;i<=n;i+=lowbit(i)) tree1[i] += v,tree2[i] += v*x; } LL ask(LL x){ LL s = 0; for(re LL i=x;i;i-=lowbit(i)) s += (x+1)*tree1[i] - tree2[i]; return s; } int main() { n = fd(),q = fd(); for(re LL i=1;i<=n;++i) a[i] = fd(); for(re LL i=1;i<=n;++i) add(i,a[i]-a[i-1]); while(q--){ LL flag = fd(); if(flag == 1){ LL l = fd(),r = fd(),v = fd(); add(l,v),add(r+1,-v); } else if(flag == 2){ LL l = fd(),r = fd(); printf("%lld\n",ask(r)-ask(l-1)); } } return 0; }
②:二维树状数组的区间修改与查询.
①:我们需要类比一维数组的区间修改与查询,这时我们要去定义一个二维的差分数组cf[ i ][ j ]表示val[ i ][ j ]与val[ i -1][ j ] + val[ i ][ j -1 ] - val[ i -1][ j -1]的差.
那么以一个点(x , y)为右下角的矩阵内元素个数为Σ(x , i = 1)Σ(y, j = 1)Σ(i,k = 1)Σ(j,t = 1)cf[ k ][ t ].
②:将上式展开,Σ(x , i = 1)Σ(y, j = 1)cf[ i ][ j ]*(x - i + 1)*(y - j + 1),再展开,(x + 1)( y + 1)*Σ(x , i = 1)Σ(y, j = 1)cf[ i ][ j ] - (y+1)Σ(x , i = 1)Σ(y, j = 1)cf[ i ][ j ]*i
- (x + 1)Σ(x , i = 1)Σ(y, j = 1)cf[ i ][ j ]*j + Σ(x , i = 1)Σ(y, j = 1)cf[ i ][ j ]*i*j.用树状数组去维护cf[ i ][ j ],cf[ i ][ j ]*i,cf[ i ][ j ]*j,cf[ i ][ j ]*i*j,四个信息即可.
③:同时注意,修改时有别于一维,(x1 , y1)为左上角,(x2 , y2)为右下角的矩阵加v时,(x1,y1) + v,(x1,y1 + 1) - v,(x2 + 1,y1)-v,(x2 + 1,y2 + 1) + v.
以LOJ例题为例:
#include<iostream> #include<cstring> #include<cstdio> using namespace std; #define e exit(0) #define re register #define LL long long const int maxn = 3010; LL n,m,flag,t1[maxn][maxn],t2[maxn][maxn],t3[maxn][maxn],t4[maxn][maxn]; inline LL fd(){ LL s=1,t=0; char c=getchar(); while(c<'0'||c>'9'){ if(c=='-') s=-1; c=getchar(); } while(c>='0'&&c<='9'){ t=t*10+c-'0'; c=getchar(); } return s*t; } LL lowbit(LL x){ return x&(-x); } void add(LL x,LL y,LL v){ for(re LL i=x;i<=n;i+=lowbit(i)) for(re LL j=y;j<=m;j+=lowbit(j)){ t1[i][j] += v; t2[i][j] += v*x; t3[i][j] += v*y; t4[i][j] += v*x*y; } } void rang_add(LL x1,LL y1,LL x2,LL y2,LL v){ add(x1,y1,v); add(x2+1,y1,-v); add(x1,y2+1,-v); add(x2+1,y2+1,v); } LL ask(LL x,LL y){ LL s = 0; for(re LL i=x;i;i-=lowbit(i)) for(re LL j=y;j;j-=lowbit(j)) s += (x+1)*(y+1)*t1[i][j]-(y+1)*t2[i][j]-(x+1)*t3[i][j]+t4[i][j]; return s; } LL rang_ask(LL x1,LL y1,LL x2,LL y2){ return ask(x2,y2)-ask(x2,y1-1)-ask(x1-1,y2)+ask(x1-1,y1-1); } int main() { n = fd(),m = fd(); while(scanf("%lld",&flag)!=EOF){ if(flag == 1){ LL x1 = fd(),y1 = fd(),x2 = fd(),y2 = fd(),v = fd(); rang_add(x1,y1,x2,y2,v); } else if(flag == 2){ LL x1 = fd(),y1 = fd(),x2 = fd(),y2 = fd(); LL ans = rang_ask(x1,y1,x2,y2); printf("%lld\n",ans); } } return 0; }
后记:考虑无修改操作时,n,m>=1e6,查询矩阵内元素个数,传送门.