11、稀疏矩阵的压缩存储
1、稀疏矩阵的压缩存储定义和初始化
#include<stdio.h> #include<stdlib.h> #include<malloc.h> #include<assert.h> #include<memory.h> #define ElemType int #define MAXSIZE 100 typedef struct Triple{ int row;//数据所在行 int col;//数据所在列 ElemType value;//数据 }Triple; typedef struct SMatrix{ Triple data[MAXSIZE]; int total_row;//总行数 m行 int total_col;//总列数 n行 int not_zero_count;//非零元素个数 }SMatrix;// Spare Mastrix void CreateMatrix(SMatrix *M){ FILE *fp = fopen("C:\\Users\\16326\\Desktop\\ds\\matrix.txt","r"); if(fp == NULL){ exit(1); } fscanf(fp, "%d %d", &M->total_col, &M->total_row); //printf("%d %d", M->mu, M->nu); int value; int k = 0;//记录data数组下标 ,也是非零元素个数 int i =0, j = 0; for(i = 0;i < M->total_col;i++){//遍历行 for(j = 0;j < M->total_row;j++){//遍历列 fscanf(fp,"%d",&value); if(value != 0){ M->data[k].value = value;//记录数据 M->data[k].row = i;//记录行 M->data[k].col = j;//记录列 k++; //非零元素个数 ++ } } } M->not_zero_count = k;//记录非零元素个数 fclose(fp);//关闭流 } /*
matrix.txt
6 7 0 12 9 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 14 0 0 0 24 0 0 0 0 0 18 0 0 0 0 0 15 0 0 -7 0 0 0 */
2、稀疏矩阵转置和快速转置方法
//将 M 转置后储存到 T 中 void transposeMatrix(SMatrix *M,SMatrix *T){ T->total_row = M->total_col; T->total_col = M->total_row; T->not_zero_count = M->not_zero_count; int i = 0,k = 0,q = 0; //遍历列,从第一列开始转置 for(i;i < M->total_col;i++){ //遍历所有非零元素 for(k = 0;k < M->not_zero_count;k++){ if(M->data[k].col == i){ T->data[q].value = M->data[k].value; T->data[q].col = M->data[k].row; T->data[q].row = M->data[k].col; q++; } } } } void FastTransposeMatrix(SMatrix* M,SMatrix* T){ if(M->not_zero_count == 0) return; T->total_row = M->total_col; T->total_col = M->total_row; T->not_zero_count = M->not_zero_count; //用于记录每一列非零元素的个数 int* num = (int*)malloc(sizeof(int) * M->total_col); assert(num != NULL); //用于记录每一列的应该存储在数组的下标位置 int* cpos = (int*)malloc(sizeof(int) * M->total_col); assert(cpos != NULL); int col = 0; //初始化num for(col = 0;col < M->total_col;col++) num[col] = 0; //遍历所有的非零元素,记录每一列非零元素的个数 int i = 0; for(i = 0;i < M->not_zero_count;i++){ col = M->data[i].col; num[col]++; } //初始化第一列的元素在对应起始下标位置为0 cpos[0] = 0; //其他列为上一列的起始位置加上一列非零元素的个数 for(col = 1;col < M->total_col;col++){ cpos[col] = cpos[col - 1] + num[col - 1]; } //进行转置 int pos = 0; for(i = 0;i < M->not_zero_count;i++){ //获取该元素所在列 col = M->data[i].col; //获取该元素应该存储在目标数组的下标 pos = cpos[col]; T->data[pos].value = M->data[i].value; T->data[pos].col = M->data[i].row; T->data[pos].row = M->data[i].col; //该列的下一个元素存储在目标数据下标 cpos[col]++; } }
3、其他方法实现
void PrintMatrix(SMatrix *M){ int i = 0; printf("row=%d, col=%d\n",M->total_row,M->total_col); for(i = 0;i < M->not_zero_count;i++){ //注意:行和列从0开始 printf("(%d,%d,%d)\n",M->data[i].row,M->data[i].col,M->data[i].value); } } void CopyMatrix(SMatrix *M, SMatrix *T){ T->total_row = M->total_row; T->total_col = M->total_col; T->not_zero_count = M->not_zero_count; int k = 0; for(k;k < M->not_zero_count;k++){ T->data[k].row = M->data[k].row; T->data[k].col = M->data[k].col; T->data[k].value = M->data[k].value; } }