Spark学习之idea scala环境配置

idea scala环境配置、运行第一个Scala程序

1、环境

  • jdk推荐1.8版本

2、下载Scala

  • 推荐安装版本,不用自己手动配置环境变量

  • scala版本要与虚拟机上提示相一致

3、创建 IDEA 工程

4、增加 Scala 支持

  • 右击项目Add Framework Support
  • 前提是安装了scala

5、安装scala插件,在idea中安装或者离线都可以

6、编写pom文件

  • 复制代码,记得刷新一下maven

  • 如果里面有之前使用过的,可以选择之前的一些版本

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>cn.itcast</groupId>
        <artifactId>spark</artifactId>
        <version>0.1.0</version>
    
        <properties>
            <scala.version>2.11.8</scala.version>
            <spark.version>2.2.0</spark.version>
            <slf4j.version>1.7.16</slf4j.version>
            <log4j.version>1.2.17</log4j.version>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>2.6.0</version>
            </dependency>
    
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>jcl-over-slf4j</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-api</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
                <version>${log4j.version}</version>
            </dependency>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>4.10</version>
                <scope>provided</scope>
            </dependency>
        </dependencies>
    
        <build>
            <sourceDirectory>src/main/scala</sourceDirectory>
            <testSourceDirectory>src/test/scala</testSourceDirectory>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.0</version>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                        <encoding>UTF-8</encoding>
                    </configuration>
                </plugin>
    
                <plugin>
                    <groupId>net.alchim31.maven</groupId>
                    <artifactId>scala-maven-plugin</artifactId>
                    <version>3.2.0</version>
                    <executions>
                        <execution>
                            <goals>
                                <goal>compile</goal>
                                <goal>testCompile</goal>
                            </goals>
                            <configuration>
                                <args>
                                    <arg>-dependencyfile</arg>
                                    <arg>${project.build.directory}/.scala_dependencies</arg>
                                </args>
                            </configuration>
                        </execution>
                    </executions>
                </plugin>
    
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-shade-plugin</artifactId>
                    <version>3.1.1</version>
                    <executions>
                        <execution>
                            <phase>package</phase>
                            <goals>
                                <goal>shade</goal>
                            </goals>
                            <configuration>
                                <filters>
                                    <filter>
                                        <artifact>*:*</artifact>
                                        <excludes>
                                            <exclude>META-INF/*.SF</exclude>
                                            <exclude>META-INF/*.DSA</exclude>
                                            <exclude>META-INF/*.RSA</exclude>
                                        </excludes>
                                    </filter>
                                </filters>
                                <transformers>
                                    <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                        <mainClass></mainClass>
                                    </transformer>
                                </transformers>
                            </configuration>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>
    </project>
    
  • 因为在 pom.xml 中指定了 Scala 的代码目录, 所以创建目录 src/main/scala 和目录 src/test/scala

7、创建object,编写代码

项目下创建dataset文件夹,并编写wordcount.txt文件

object WordCounts {

  def main(args: Array[String]): Unit = {
    // 1. 创建 Spark Context
    val conf = new SparkConf().setMaster("local[2]").setAppName("word_count")
    val sc: SparkContext = new SparkContext(conf)

    // 2. 读取文件并计算词频
    val source =  sc.textFile("dataset/wordcount.txt")
    val words  = source.flatMap { item => item.split(" ") }
    val wordsTuple = words.map { word => (word, 1) }
    val wordsCount = wordsTuple.reduceByKey { (x, y) => x + y }
    // 3. 查看执行结果
    println(wordsCount.collect)
  }
}

8、运行

posted @ 2021-01-13 19:01  xppp11  阅读(202)  评论(0编辑  收藏  举报