Spark学习之idea scala环境配置
idea scala环境配置、运行第一个Scala程序
1、环境
- jdk推荐1.8版本
2、下载Scala
-
推荐安装版本,不用自己手动配置环境变量
-
scala版本要与虚拟机上提示相一致
3、创建 IDEA 工程
4、增加 Scala 支持
- 右击项目Add Framework Support
- 前提是安装了scala
5、安装scala插件,在idea中安装或者离线都可以
6、编写pom文件
-
复制代码,记得刷新一下maven
-
如果里面有之前使用过的,可以选择之前的一些版本
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cn.itcast</groupId> <artifactId>spark</artifactId> <version>0.1.0</version> <properties> <scala.version>2.11.8</scala.version> <spark.version>2.2.0</spark.version> <slf4j.version>1.7.16</slf4j.version> <log4j.version>1.2.17</log4j.version> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>jcl-over-slf4j</artifactId> <version>${slf4j.version}</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>${slf4j.version}</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>${slf4j.version}</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>${log4j.version}</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.10</version> <scope>provided</scope> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.0</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> </configuration> </plugin> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.0</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> <configuration> <args> <arg>-dependencyfile</arg> <arg>${project.build.directory}/.scala_dependencies</arg> </args> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>3.1.1</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainClass></mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins> </build> </project>
-
因为在
pom.xml
中指定了 Scala 的代码目录, 所以创建目录src/main/scala
和目录src/test/scala
7、创建object,编写代码
项目下创建dataset文件夹,并编写wordcount.txt
文件
object WordCounts {
def main(args: Array[String]): Unit = {
// 1. 创建 Spark Context
val conf = new SparkConf().setMaster("local[2]").setAppName("word_count")
val sc: SparkContext = new SparkContext(conf)
// 2. 读取文件并计算词频
val source = sc.textFile("dataset/wordcount.txt")
val words = source.flatMap { item => item.split(" ") }
val wordsTuple = words.map { word => (word, 1) }
val wordsCount = wordsTuple.reduceByKey { (x, y) => x + y }
// 3. 查看执行结果
println(wordsCount.collect)
}
}
8、运行
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END