地图收敛心得170405

寻路算法大总结!








交换机生成树采用的是完全不同的D-V(distance vector)距离矢量算法,并不是很可靠.


并不是任意两点之间的最短路径,因为任意两点之间取最短路径可能有环路:总权更大



交换机STP不一定是最小生成树!!!举例论证 因为它只是所有交换机到根桥最短 贪心算法的味道


kruskal算法也是贪心算法??


收敛方式

有无环

开销

批注

任意两点之间取最短路径,

最有可能出现环,环数最多.

总开销最大.

此时相当于多源最短路径算法得到的收敛地图.

n-2个点为根,分别让其余n-1个点到自己选择最短路径.

很有可能出现环,环数很多.

总开销非常大.

此时只剩下两个点之间可能不是最短路径.

……以此类推.

越向上走,越可能出现环,环数越多.

越往上走,总开销只可能增长不可能减少.

\

以两个点为根,分别让其余n-1个点到自己选择最短路径.

可能有环.

总开销再次之.

此时相当于两棵SPF树出现在同一张网络上.(取并)

以一个点为根,其余n-1个点到自己选择最短路径.

肯定无环.

总开销次之.

此时就是交换机的STP协议.

不考虑根和两点间最短距离,用最短的路径连线连接所有的节点.

肯定无环.

总开销最小.

此时是最小生成树,每对不同节点间相互覆盖的边数最多.




由欧拉定理得,环数加上n等于边数加1,所以每增加一个环就要增加一条边,相应的就要增加一份开销.


距离矢量路由协议算出来的也是最小生成树;所有SPF树重叠在一起也就是最小生成树.


我们将所有的寻路收敛算法进行统一的思考,这样我们会发现其实他们都属于同一类型的不同程度,就像牛顿把静止也视作一种特殊的运动,因为它是速度为0的运动.









posted @ 2017-09-04 10:30  xosg  阅读(110)  评论(0编辑  收藏  举报