复习一下吧, 排序算法
先来张图片
冒泡排序
算法描述
- <1>.比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- <2>.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- <3>.针对所有的元素重复以上的步骤,除了最后一个;
- <4>.重复步骤1~3,直到排序完成。
代码实现
设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置。由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
function bubbleSort(arr) { var i = arr.length-1; //初始时,最后位置保持不变 while ( i> 0) { var pos= 0; //每趟开始时,无记录交换 for (var j= 0; j< i; j++) if (arr[j]> arr[j+1]) { pos= j; //记录交换的位置 var tmp = arr[j]; arr[j]=arr[j+1];arr[j+1]=tmp; } i= pos; //为下一趟排序作准备 } console.timeEnd('改进后冒泡排序耗时'); return arr; } |
选择排序
算法描述
- <1>.初始状态:无序区为R[1..n],有序区为空;
- <2>.第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
- <3>.n-1趟结束,数组有序化了。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
function selectionSort(arr) { var len = arr.length; var minIndex, temp; for (var i = 0; i < len - 1; i++) { minIndex = i; for (var j = i + 1; j < len; j++) { if (arr[j] < arr[minIndex]) { //寻找最小的数 minIndex = j; //将最小数的索引保存 } } temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } return arr; } |
插入排序
算法描述
- <1>.从第一个元素开始,该元素可以认为已经被排序;
- <2>.取出下一个元素,在已经排序的元素序列中从后向前扫描;
- <3>.如果该元素(已排序)大于新元素,将该元素移到下一位置;
- <4>.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- <5>.将新元素插入到该位置后;
- <6>.重复步骤2~5。
代码描述
1 2 3 4 5 6 7 8 9 10 11 12 |
function insertionSort(array) { for (var i = 1; i < array.length; i++) { var key = array[i]; var j = i - 1; while (j >= 0 && array[j] > key) { array[j + 1] = array[j]; j--; } array[j + 1] = key; } return array; } |
算法分析
- 最佳情况:输入数组按升序排列。T(n) = O(n)
- 最坏情况:输入数组按降序排列。T(n) = O(n2)
- 平均情况:T(n) = O(n2)
希尔排序
算法描述
- <1>. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- <2>.按增量序列个数k,对序列进行k 趟排序;
- <3>.每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
function shellSort(arr) { var len = arr.length, temp, gap = 1; console.time('希尔排序耗时:'); while(gap < len/5) { //动态定义间隔序列 gap =gap*5+1; } for (gap; gap > 0; gap = Math.floor(gap/5)) { for (var i = gap; i < len; i++) { temp = arr[i]; for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) { arr[j+gap] = arr[j]; } arr[j+gap] = temp; } } console.timeEnd('希尔排序耗时:'); return arr; } |
算法分析
- 最佳情况:T(n) = O(nlog2 n)
- 最坏情况:T(n) = O(nlog2 n)
- 平均情况:T(n) =O(nlog n)
归并排序
算法描述
- <1>把长度为n的输入序列分成两个长度为n/2的子序列;
- <2>对这两个子序列分别采用归并排序;
- <3>将两个排序好的子序列合并成一个最终的排序序列。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
function mergeSort(arr) { //采用自上而下的递归方法 var len = arr.length; if(len < 2) { return arr; } var middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right)); } function merge(left, right) { var result = []; console.time('归并排序耗时'); while (left.length && right.length) { if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); console.timeEnd('归并排序耗时'); return result; } |
算法分析
- 最佳情况:T(n) = O(n)
- 最坏情况:T(n) = O(nlog n)
- 平均情况:T(n) =O(nlog n)
快速排序
算法描述
- <1>从数列中挑出一个元素,称为 “基准”(pivot);
- <2>重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- <3>递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
var arr = [12,3,23,5,17,9,15,46]; function quickSort(arr,left, right){ var i,j,t,temp; if(left>right){ return; } i = left; j = right; temp = arr[left]; while(i!==j){ while(temp<=arr[j]&&i<j){ j--; } while(temp>=arr[i]&&i<j){ i++ } if(i<j){ [arr[j], arr[i]] = [arr[i], arr[j]]; } } arr[left] = arr[i]; arr[i] = temp; quickSort(arr,left,i-1); quickSort(arr,i+1,right); } quickSort(arr,0, arr.length-1); console.log(arr); |
算法分析
- 最佳情况:T(n) = O(nlogn)
- 最坏情况:T(n) = O(n2)
- 平均情况:T(n) =O(nlog n)
堆排序
算法描述
- <1>将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- <2>将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- <3>由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
function heapify(arr, x, len) { if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') { var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp; if (l < len && arr[l] > arr[largest]) { largest = l; } if (r < len && arr[r] > arr[largest]) { largest = r; } if (largest != x) { temp = arr[x]; arr[x] = arr[largest]; arr[largest] = temp; heapify(arr, largest, len); } } else { return 'arr is not an Array or x is not a number!'; } } /*方法说明:维护堆的性质 @param arr 数组 @param x 数组下标 @param len 堆大小*/ function heapify(arr, x, len) { if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') { var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp; if (l < len && arr[l] > arr[largest]) { largest = l; } if (r < len && arr[r] > arr[largest]) { largest = r; } if (largest != x) { temp = arr[x]; arr[x] = arr[largest]; arr[largest] = temp; heapify(arr, largest, len); } } else { return 'arr is not an Array or x is not a number!'; } }
算法分析
- 最佳情况:T(n) = O(nlogn)
- 最坏情况:T(n) = O(nlogn)
- 平均情况:T(n) =O(nlogn)