ReentrantLock 详解

ReentrantLock的功能是实现代码段的并发访问控制,也就是通常意义上所说的锁,java中实现锁有两种方式,一种是本文所提的ReentrantLock,另一种是synchronized。ReentrantLock相比synchronized 使用可以更灵活,这次就来看看ReentrantLock的内部实现。

我们首先看下ReentrantLock的锁是如何实现的

其实就一行代码 ,看起来很简单,那么这里的sync是什么呢?

这是ReentrantLock内部的一个抽象类,继承了AbstractQueuedSynchronizer(AQS),ReentrantLock所有的功能都和这个类有关

 用过ReentrantLock的人都知道,ReentrantLock是分为公平锁和非公平锁,这在ReentrantLock内部是两种实现

公平锁:每个线程抢占锁的顺序为先后调用lock方法的顺序依次获取锁。

非公平锁:每个线程抢占锁的顺序不定,谁运气好,谁就获取到锁,和调用lock方法的先后顺序无关。

首先看下公平锁的内部实现

公平锁 加锁:


 调用到了AQS的acquire方法:

再看下获取锁的代码

原来这里子类重写了

 1 protected final boolean tryAcquire(int acquires) {
 2             final Thread current = Thread.currentThread();
 3             //获取状态位
 4             int c = getState();
 5             //0,锁还没被拿走
 6             if (c == 0) {
 7                 //如果队列中没有其他线程 说明没有线程正在占有锁
 8                 if (!hasQueuedPredecessors() &&
 9                     //修改状态为1
10                     compareAndSetState(0, acquires)) {
11                     //如果通过CAS操作将状态为更新成功则代表当前线程获取锁,
12                     //因此,将当前线程设置到AQS的一个变量中,说明这个线程拿走了锁。
13                     setExclusiveOwnerThread(current);
14                     return true;
15                 }
16             }
17             //锁被拿走了,由于ReentrantLock是可重入锁,所以判断下持有锁的是否是同一个线程
18             else if (current == getExclusiveOwnerThread()) {
19                 //如果是的话累加在state字段上就可以了
20                 int nextc = c + acquires;
21                 if (nextc < 0)
22                     throw new Error("Maximum lock count exceeded");
23                 setState(nextc);
24                 return true;
25             }
26             return false;
27         }
28     }
29 
30 
31     protected final int getState() {
32         return state;
33     }

再回到acquire方法中

 我们看下addWaiter方法

 1 private Node addWaiter(Node mode) {
 2         //用当前线程构造一个node,mode是一个表示Node类型的字段,
 3         //仅仅表示这个节点是独占的,还是共享的
 4         Node node = new Node(Thread.currentThread(), mode);
 5         // Try the fast path of enq; backup to full enq on failure
 6         Node pred = tail;
 7         //将节点插入到尾部
 8         if (pred != null) {
 9             node.prev = pred;
10             if (compareAndSetTail(pred, node)) {
11                 pred.next = node;
12                 return node;
13             }
14         }
15         //节点插入尾部失败,进入enq的死循环,知道插入成功
16         enq(node);
17         return node;
18     }

 将线程的节点添加队里中后,还需要做一件事:将当前线程挂起!这个事,由acquireQueued来做。

 1 final boolean acquireQueued(final Node node, int arg) {
 2         boolean failed = true;
 3         try {
 4             boolean interrupted = false;
 5             for (;;) {
 6                 final Node p = node.predecessor();
 7                 //如果当前的前一个节点是head说明他是队列中第一个“有效的”节点,因此尝试获取,这个方法子类重写了。
 8                 if (p == head && tryAcquire(arg)) {
 9                     setHead(node);//获取成功之后设为将该节点头结点
10                     p.next = null; // help GC 将原先的头结点的联系去除 这样原先头结点就可以被GC
11                     failed = false;
12                     return interrupted;
13                 }
14                 ////否则,检查前一个节点的状态为,看当前获取锁失败的线程是否需要挂起。
15                 if (shouldParkAfterFailedAcquire(p, node) &&
16                     //如果需要,借助JUC包下的LockSopport类的静态方法Park挂起当前线程。直到被唤醒。
17                     parkAndCheckInterrupt())
18                     interrupted = true;
19             }
20         } finally {
21             if (failed)
22                 cancelAcquire(node);
23         }
24     }
1 private final boolean parkAndCheckInterrupt() {
2         LockSupport.park(this);
3         return Thread.interrupted();
4     }

这里需要在介绍下AQS中的Node节点的状态

黄色节点是默认head节点,默认是一个空节点,可以理解成代表当前持有锁的线程,每当有线程竞争失败,都是插入到队列的尾节点,tail节点始终指向队列中的最后一个元素。默认只有当前节点的pre节点是头结点才能去acquire

/** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        static final int PROPAGATE = -3;

        /**
         * Status field, taking on only the values:
         *   SIGNAL:     The successor of this node is (or will soon be)
         *               blocked (via park), so the current node must
         *               unpark its successor when it releases or
         *               cancels. To avoid races, acquire methods must
         *               first indicate they need a signal,
         *               then retry the atomic acquire, and then,
         *               on failure, block.
         *   CANCELLED:  This node is cancelled due to timeout or interrupt.
         *               Nodes never leave this state. In particular,
         *               a thread with cancelled node never again blocks.
         *   CONDITION:  This node is currently on a condition queue.
         *               It will not be used as a sync queue node
         *               until transferred, at which time the status
         *               will be set to 0. (Use of this value here has
         *               nothing to do with the other uses of the
         *               field, but simplifies mechanics.)
         *   PROPAGATE:  A releaseShared should be propagated to other
         *               nodes. This is set (for head node only) in
         *               doReleaseShared to ensure propagation
         *               continues, even if other operations have
         *               since intervened.
         *   0:          None of the above
         *
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn't need to
         * signal. So, most code doesn't need to check for particular
         * values, just for sign.
         *
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified using CAS
         * (or when possible, unconditional volatile writes).
         */
        volatile int waitStatus;
每个节点中, 除了存储了当前线程,前后节点的引用以外,还有一个waitStatus变量,用于描述节点当前的状态。多线程并发执行时,队列中会有多个节点存在,这个waitStatus其实代表对应线程的状态:有的线程可能获取锁因为某些原因放弃竞争;有的线程在等待满足条件,满足之后才能执行等等。一共有4中状态:

CANCELLED 取消状态

SIGNAL 等待触发状态

CONDITION 等待条件状态

PROPAGATE 状态需要向后传播

到此为止,一个线程对于锁的一次竞争才告于段落,结果有两种,要么成功获取到锁(不用进入到AQS队列中),要么,获取失败,被挂起,等待下次唤醒后继续循环尝试获取锁,值得注意的是,AQS的队列为FIFO队列,所以,每次被CPU假唤醒,且当前线程不是出在头节点的位置,也是会被挂起的

 

非公平锁 加锁:


 

 非公平锁相对于公平锁,只有加锁的环节是不同的

非公平锁首先先去尝试修改AQS状态,如果成功了,当前线程就持有了锁,失败了,再像公平锁一样,进入队列,静静的等待

锁释放:


还是一行代码,再看看sync的内部实现

 

代码很直观明了,我们再看下是如何唤醒头结点的

 至此一个完整的流程就结束了。我们再来总结下整个流程

以公平锁为例

加锁:

    1.尝试获取锁,判断state是否是0,是0的话CAS操作把state改为1,获取到锁
    2.state不是0,判断下是否存在重入锁的情况
    3.如果1和2都失败了,那就要把节点插入到链表中
    4.再把这个线程挂起,挂起的时候还会尝试一次1和2的操作

释放锁:

    1.释放锁
    2.唤醒AQS节点

 

posted @ 2018-02-19 16:40  XuMinzhe  阅读(931)  评论(0编辑  收藏  举报