PyTorch之Activation
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import torch import torch.nn.functional as F # 激励函数都在这 from torch.autograd import Variable # 做一些假数据来观看图像 x = torch.linspace(-5, 5, 200) # x data (tensor), shape=(100, 1) x = Variable(x) x_np = x.data.numpy() # 换成 numpy array, 出图时用 # 几种常用的 激励函数 y_relu = F.relu(x).data.numpy() y_sigmoid = F.sigmoid(x).data.numpy() y_tanh = F.tanh(x).data.numpy() y_softplus = F.softplus(x).data.numpy() # y_softmax = F.softmax(x) softmax 比较特殊, 不能直接显示, 不过他是关于概率的, 用于分类 import matplotlib.pyplot as plt # python 的可视化模块, 我有教程 (https://morvanzhou.github.io/tutorials/data-manipulation/plt/) plt.figure(1, figsize=(8, 6)) plt.subplot(221) plt.plot(x_np, y_relu, c='red', label='relu') plt.ylim((-1, 5)) plt.legend(loc='best') plt.subplot(222) plt.plot(x_np, y_sigmoid, c='red', label='sigmoid') plt.ylim((-0.2, 1.2)) plt.legend(loc='best') plt.subplot(223) plt.plot(x_np, y_tanh, c='red', label='tanh') plt.ylim((-1.2, 1.2)) plt.legend(loc='best') plt.subplot(224) plt.plot(x_np, y_softplus, c='red', label='softplus') plt.ylim((-0.2, 6)) plt.legend(loc='best') plt.show()