Tensorflow之tensorboard可视化

首先简单认识tensorboard

简单的生成tensorboard文件

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
tensorboard 可视化生成tensorboard文件
"""
import tensorflow as tf

def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b, )
    return outputs

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                    reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess = tf.Session()

"""
tensorboard文件生成的位置,文件位置为../logs
"""
writer = tf.summary.FileWriter("../logs/", sess.graph)

# important step
sess.run(tf.initialize_all_variables())

 

运行程序后, 可以在tensorboard文件生成的位置的文件夹下找到名为events.out.tfevents.1499943764.m类似的文件

打开终端输入:

tensorboard --logdir='../logs/'

logdir为程序中定义的log的文件夹路径

看到如下运行结果

$ tensorboard --logdir='../logs/'
Starting TensorBoard 41 on port 6006

 

打开浏览器输入http://0.0.0.0:6006, 即可打开可视化界面,左下角有文件的路径

 

上面只是生成了一个界面,下面详细的定义每个tensorboard中每个标签页输出的图像

 

posted @ 2017-07-21 17:03  xmeo  阅读(611)  评论(0编辑  收藏  举报