ultra fast lane detection读后感及使用情况(附训练好的模型及libtorch端代码)

ultra fast lane detection提供了很好的源码,根据演示视频来看,效果似乎不赖,很有必要试一试该算法。

一、基本情况

作者知乎:超快的车道线检测 - 知乎 (zhihu.com)

简单来说,作者认为卷积层形式的输出,导致局部感受野小,很明显车道线识别需要结合全局特征来分析。而全连接层形式的输出,运用了全局特征,也就没有感受野的问题。

另外,作者把这个问题转化为了分类问题。也就是如下图所示。

 

 C是车道线数目,h和w则是图像长宽相关的cell,类似于锚点。w方向上的通道是w+1个,最后一位输出的是有无该通道。

大概意思,就是用h和w预测第c个车道的大概位置,然后按照下面的公式,算具体位置:

 

损失函数还考量到相邻的位置附近,因此有了,后两个损失函数就是邻近位置的二阶差分,邻近概率的差分。

二、使用情况

 作者在github上已经给出了开源库。要求先设置configs下的py,我选了culane数据集(比较大,大概50多个G),因此修改了culane.py。

需要注意的是,culane数据集有黑夜的数据集,但貌似没有特殊天气的数据。

如果要使用tusimple数据集,要使用scripts下的convert_tusimple.py生成train_gt.txt。(运行时记得加 设置--root E:\tusimple数据集 )

之后就在pycharm进行了训练。

 以下是笔者使用的libtorch C++端的代码,另外需要提醒一点(如果对数据的存储与运算不熟悉的话)

CPU类型下大多数函数都可以使用,但是推理速度比较慢。CUDA类型下并行速度快,但是有些函数不能用,遍历计算速度很慢,需要转为CPU类型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include <torch/script.h>
#include <torch/torch.h>
#include<ATen/ATen.h>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <windows.h>
using namespace torch::indexing;
using namespace std;
 
 
int tusimple_row_anchor[56] = {64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112,
116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164,
168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216,
220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268,
272, 276, 280, 284};
int culane_row_anchor[18] = {121, 131, 141, 150, 160, 170, 180, 189, 199, 209, 219, 228, 238, 248, 258, 267, 277, 287};
 
 
void tusimple_lane(at::Tensor& input, cv::Mat& img)
{
 
    int lane_num = 4;
    int length_cell = 56;
    int width = 100;
    int topk_n = 3;
 
    double w_scale = img.cols / (double)width;
    double h_scale = img.rows / (double)(length_cell*2);
    input = input.to(torch::kCPU);//CPU for Ergodic computation,CUDA for Parallel computation
 
    for (int i = 0; i < length_cell; i++)
        for (int j = 0; j < lane_num; j++)
        {
 
            double lane_loc = 0;
            double sum_w = 0;
            double sum = 0;
 
 
 
 
            auto cut = input.index({ Slice(torch::indexing::None),Slice(torch::indexing::None), Slice(i,i + 1), Slice(j,j + 1) });
            cut = torch::softmax(cut, 1).view(-1);
 
            if (cut[width].item<float>() > 0.5)
            {
                continue;
            }
 
            std::vector<float> tesnor2vec(cut.data_ptr<float>(), cut.data_ptr<float>() + cut.numel());
            for (int s = 0; s < width; s++)
            {
                sum += tesnor2vec[s];
                sum_w += tesnor2vec[s] * s;
            }
 
            lane_loc = (sum_w / sum) * w_scale;
 
            //std::tuple<torch::Tensor, torch::Tensor> result = cut.topk(2, -1);
            //auto top_scores = std::get<0>(result).view(-1);//{1,10} 变成 {10}
            //auto top_idxs = std::get<1>(result).view(-1);
            /*if (cut[width].item<float>() > 0.5)
            {
                continue;
            }
            if(top_idxs[0].item().toInt()!=width)
            {
                lane_loc = top_idxs[0].item().toInt() * w_scale;
            }
            else
            {
                lane_loc= top_idxs[1].item().toInt() * w_scale;
            }*/
 
 
 
            cv::Scalar temp;
            switch (j)
            {
            case 0:
                temp = cv::Scalar(0, 0, 0);
                break;
            case 1:
                temp = cv::Scalar(255, 0, 0);
                break;
            case 2:
                temp = cv::Scalar(0, 255, 0);
                break;
            case 3:
                temp = cv::Scalar(0, 0, 255);
                break;
            }
            cv::circle(img, cv::Point(lane_loc, tusimple_row_anchor[i]), 5, temp, -1);
 
        }
 
}
//
void culane_lane(at::Tensor& input, cv::Mat& img)
{
     
    int lane_num = 4;
    int length_cell = 18;
    int width = 200;
    int topk_n =3;
 
    double w_scale = img.cols/(double)width;
    double h_scale = img.rows/(double)length_cell;
    input = input.to(torch::kCPU);//CPU for Ergodic computation,CUDA for Parallel computation
 
    for(int i=0;i<length_cell;i++)
        for (int j = 0; j < lane_num; j++)
        {
 
            double lane_loc = 0;
            double sum_w = 0;
            double sum = 0;
 
 
 
 
            auto cut = input.index({ Slice(torch::indexing::None),Slice(torch::indexing::None), Slice(i,i + 1), Slice(j,j + 1) });
            cut = torch::softmax(cut, 1).view(-1);
 
 
            if (cut[width].item<float>() > 0.5)
            {
                continue;
            }
 
            std::vector<float> tesnor2vec(cut.data_ptr<float>(), cut.data_ptr<float>() + cut.numel());
            for (int s = 0; s < width; s++)
            {
                sum += tesnor2vec[s];
                sum_w += tesnor2vec[s] * s;
            }
 
            lane_loc = (sum_w / sum )* w_scale;
            cv::Scalar temp;
            switch (j)
            {
            case 0:
                temp = cv::Scalar(0, 0, 0);
                break;
            case 1:
                temp = cv::Scalar(255, 0, 0);
                break;
            case 2:
                temp = cv::Scalar(0, 255, 0);
                break;
            case 3:
                temp = cv::Scalar(0, 0, 255);
                break;
            }
            cv::circle(img, cv::Point(lane_loc, culane_row_anchor[i]), 5, temp, -1);
 
        }
         
}
 
int main()
{
    torch::jit::script::Module module = torch::jit::load("C:\\Users\\lvdon\\source\\repos\\C_test\\lane_det\\lane.torchscript_gpu.pt");
    torch::DeviceType device_type = torch::kCUDA;
    module.to(device_type);
    module.eval();
    cv::VideoCapture cap("G:\\视频\\弯道\\cv2_curve.mp4");
 
    //cv::VideoWriter vw;
    //vw.open("C:\\Users\\lvdon\\source\\repos\\C_test\\test.mp4", //路径
    //  CV_FOURCC('m', 'p', '4', 'v'), //编码格式
    //  30, //帧率
    //  cv::Size(800,
    //      288));//尺寸
 
    cv::Mat img;
    cv::Mat ori;
    cap.read(img);
    int width = img.size().width;
    int height = img.size().height;
    int count = 0;
    while (true)
    {
        clock_t start = clock();
        count++;
        cap >> img;
        if (img.empty())
        {
            cout << "play end" << endl;
            break;
        }
        else if (count % 1 != 0)
        {
            continue;
        }
        //img = cv::imread("E:\\train_lane\\driver_182_30frame\\05312333_0003.MP4\\00000.jpg");
        cv::resize(img, img, cv::Size(600, 288));
        cv::copyMakeBorder(img, img,0, 0, 100, 100, cv::BORDER_CONSTANT, cv::Scalar(0, 0,0));
        cv::cvtColor(img, img, cv::COLOR_BGR2RGB);  // BGR -> RGB
        img.convertTo(img, CV_32FC3, 1.0f / 255.0f);  // normalization 1/255
 
         
        auto tensor_img = torch::from_blob(img.data, { 1, img.rows, img.cols, img.channels() },torch::kFloat).to(device_type);
        tensor_img = tensor_img.permute({ 0, 3, 1, 2 }).contiguous();  // BHWC -> BCHW (Batch, Channel, Height, Width)
        std::vector<torch::jit::IValue> inputs;
 
     
        inputs.emplace_back(tensor_img);
        auto output = module.forward(inputs).toTensor();
        culane_lane(output,img);
        cout << "cost time:" << clock() - start << endl;
        //cv::imshow("result", img);
 
        img.convertTo(img, CV_8UC3,255);//need to convert to CV_8UC3 for save the video
        cv::imshow("result", img);
        //vw << img;
     
        //cv::imshow("result", img);
        cv::waitKey(1);
    }
    return NULL;
}

 

模型链接: https://pan.baidu.com/s/1MZhkt87aWFb771gwUBxH6A?pwd=LDHL 提取码: LDHL 

转载前,请注明来源。

posted @   澳大利亚树袋熊  阅读(772)  评论(0编辑  收藏  举报
编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
点击右上角即可分享
微信分享提示