poj1050-To the Max
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The
input consists of an N * N array of integers. The input begins with a
single positive integer N on a line by itself, indicating the size of
the square two-dimensional array. This is followed by N^2 integers
separated by whitespace (spaces and newlines). These are the N^2
integers of the array, presented in row-major order. That is, all
numbers in the first row, left to right, then all numbers in the second
row, left to right, etc. N may be as large as 100. The numbers in the
array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
主要思想就是降维,源代码如下:
1 #include <stdio.h> 2 #include <stdlib.h> 3 #define M 101 4 int num[M][M]; 5 int N; 6 7 int submax(int a[M]) 8 { 9 int i,pre=a[1],max=0; 10 for(i=2;i<=N;i++) 11 { 12 if(a[i]+pre>a[i]) 13 pre=a[i]+pre; 14 else 15 pre=a[i]; 16 if(pre>max) 17 max=pre; 18 } 19 return max; 20 } 21 22 int submax2() 23 { 24 int b[M]; 25 int i,j,k,max=0; 26 for(i=1;i<=N;i++) 27 { 28 memset(b,0,sizeof(b)); 29 for(j=i;j<=N;j++) 30 { 31 for(k=1;k<=N;k++) 32 b[k]+=num[j][k]; 33 int ff=submax(b); 34 if(ff>max) max=ff; 35 } 36 } 37 return max; 38 } 39 40 int main() 41 { 42 int i,j,k; 43 scanf("%d",&N); 44 for(i=1;i<=N;i++) 45 for(j=1;j<=N;j++) 46 scanf("%d",&num[i][j]); 47 printf("%d\n",submax2()); 48 49 return 0; 50 }