2020还是AI最火?推荐几本深度学习的书籍帮你入门!
最近公司里有一些关于算法方面的工作,想到能学点有趣的新技术,于是毫不犹豫地参加了学习,机器学习,深度学习,离我们Java工程师到底远不远,说近不近,说远也不远,我们甚至可以在没有太多机器学习理论的基础时,去学习一些深度学习的简单应用,至少拿到demo过来跑一下还是没什么问题的。
深度学习到底是啥,简单来说,深度学习是机器学习领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
今天我们就来推荐几本我们公司几位算法大佬推荐的深度学习图书,虽然不能保证你们看得懂,但是也一定是优中选优,如果你对机器学习有所了解,想学习一些深度学习的知识,也不妨看看这一份书单。
深度学习系列书单
深度学习
《深度学习》由全球知名的三位专家IanGoodfellow、YoshuaBengio和AaronCourville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
作者简介
IanGoodfellow,谷歌公司(Google)的研究科学家,2014年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。IanGoodfellow在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓越。
YoshuaBengio,蒙特利尔大学计算机科学与运筹学系(DIRO)的教授,蒙特利尔学习算法研究所(MILA)的负责人,CIFAR项目的共同负责人,加拿大统计学习算法研究主席。YoshuaBengio的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。
AaronCourville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。AaronCourville主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI相关任务方面也有所研究。
中文版审校者简介
张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。
译者简介
赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。
黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。
符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。
李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。
深度学习图解
深度学习是人工智能的一个分支,受到人类大脑的启发,致力于指导计算机用神经网络进行学习。在线文本翻译、自动驾驶、商品推荐和智能语音助手等一系列令人兴奋的现代技术应用领域,都在深度学习的辅助下取得了突破性进展。
《深度学习图解》指导你从基础的每一行代码开始搭建深度学习网络!经验丰富的深度学习专家Andrew W.Trask以有趣的图解方式为你揭开深度学习的神秘面纱,使你可亲身体会训练神经网络的每个细节。
只需要使用Python语言及其基本的数学库NumPy,就可以训练出自己的神经网络,借助它观察并理解图像、将文字翻译成不同的语言,甚至像莎士比亚一样写作!当你完成这一切后,就为成为精通深度学习框架的专家做好了充分准备!
Andrew W. Trask是Digital Reasoning公司机器学习实验室的创始成员,该实验室致力于自然语言处理、图像识别和音频转录的深度学习研究。几个月内,Andrew和他的伙伴们就在情绪分类和词性标注方面发表了超过业界更佳方案的结果。
他训练了世界上更大的人工神经网络,拥有超过1600亿个参数,实验结果发表在ICML(International Conference on Machine Learning)上,还有一部分结果发表在Journal of Machine Learning(JML)上。他在Digital Reasoning公司担任文本处理和音频分析的产品经理,负责仿真认知计算平台的架构设计,深度学习是这一平台的核心能力。
百面深度学习 算法工程师带你去面试
深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。
全书内容大致分为两个部分,部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。
本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。
书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的“百面”精彩,让不同读者都能找到合适的内容。
本书适合相关的在校学生检查和加强对所学知识点的掌握程度,求职者快速复习和补充相关的深度学习知识,以及算法工程师作为工具书随时参阅。
此外,非相关、但对人工智能或深度学习感兴趣的研究人员,也可以通过本书大致了解一些热门的人工智能应用、深度学习模型背后的核心算法及其思想。
作者介绍:
江云胜:2016 年毕业于北京大学数学科学学院,获应用数学博士学位。毕业后加入Hulu北京研发中心的Content Intelligence组,负责内容理解相关的研究工作。
葫芦娃:28位Hulu北京创新实验室的人才,他们利用擅长的深度学习、机器学习等领域知识和算法模型,建立了一套定制化的AI平台,改变着推荐引擎、视频编解码、内容理解、广告投放等多项与用户息息相关的在线业务技术。