算法笔记 #005# 优先队列
留着备用。
“first-in largest-out”最大优先队列:
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title></title> </head> <body> <script type="text/javascript"> class PriorityQueue { constructor() { this.A = []; Heap.buildMaxHeap(this.A); } isEmpty() { return this.A.heapSize == 0; } insertWithPriority(x, priority) { this.A.heapSize += 1; this.A[this.A.heapSize] = { x: x, priority: -Infinity }; Heap.increasePriority(this.A, this.A.heapSize, priority); } pullHighestPriorityElement() { if (this.A.heapSize == 0) { return null; } else { return Heap.extractMax(this.A).x; } } peek() { return this.A[1].x; } } </script> <script type="text/javascript"> // 改进版本2,专门用来写优先队列。 // 每个数组元素有两个属性:x和priority,后者决定位置,前者是实际存储的内容 class Heap { // 把数组A转化为最大堆 static buildMaxHeap(A) { A.unshift(undefined); // 便于后续的下标计算 A.heapSize = A.length - 1; // 实际多存了一个undefined for (let i = Math.floor(A.heapSize / 2); i >= 1; --i) { // 对所有非叶结点调用一次maxHeapify // 之所以下标从后往前,是因为maxHeapify假定调用结点的左右子树都已经为最大堆 // 单个元素(叶结点)很自然地是一个最大堆 Heap.maxHeapify(A, i); } } // 维护堆的性质 static maxHeapify(A, i) { let l = Heap.left(i); let r = Heap.right(i); let largest = i; // maxHeapify假定调用结点的左右子树都已经为最大堆 // 只是把调用结点i放到恰当的位置,以维护堆的性质 if (l <= A.heapSize && A[l].priority > A[i].priority) { largest = l; } if (r <= A.heapSize && A[r].priority > A[largest].priority) { largest = r; } if (largest != i) { let temp = A[i]; A[i] = A[largest]; A[largest] = temp; Heap.maxHeapify(A, largest); } } static left(i) { return 2 * i; } static right(i) { return 2 * i + 1; } static parent(i) { return Math.floor(i / 2); } static extractMax(A) { if (A.heapSize < 1) return null; let max = A[1]; A[1] = A[A.heapSize]; A.heapSize = A.heapSize - 1; Heap.maxHeapify(A, 1); return max; } static increasePriority(A, i, newPriority) { if (newPriority < A[i].priority) { return; } A[i].priority = newPriority; while (i > 1 && A[Heap.parent(i)].priority < A[i].priority) { let temp = A[i]; A[i] = A[Heap.parent(i)]; A[Heap.parent(i)] = temp; i = Heap.parent(i); } } } </script> <script type="text/javascript"> let pQ = new PriorityQueue(); console.log(pQ.isEmpty()); pQ.insertWithPriority("employee", 15); console.log(pQ.isEmpty()); pQ.insertWithPriority("boss", 25); console.log(pQ.peek()); console.log(pQ.pullHighestPriorityElement()); console.log(pQ.pullHighestPriorityElement()); /** * output= * true * false * boss * boss * employee */ </script> </body> </html>
便于copy版最大优先队列:
class PriorityQueue { constructor() { this.A = []; Heap.buildMaxHeap(this.A); } isEmpty() { return this.A.heapSize == 0; } insertWithPriority(x, priority) { this.A.heapSize += 1; this.A[this.A.heapSize] = { x: x, priority: -Infinity }; Heap.increasePriority(this.A, this.A.heapSize, priority); } pullHighestPriorityElement() { if(this.A.heapSize == 0) { return null; } else { return Heap.extractMax(this.A).x; } } peek() { return this.A[1].x; } } // 改进版本2,专门用来写优先队列。 // 每个数组元素有两个属性:x和priority,后者决定位置,前者是实际存储的内容 class Heap { // 把数组A转化为最大堆 static buildMaxHeap(A) { A.unshift(undefined); // 便于后续的下标计算 A.heapSize = A.length - 1; // 实际多存了一个undefined for(let i = Math.floor(A.heapSize / 2); i >= 1; --i) { // 对所有非叶结点调用一次maxHeapify // 之所以下标从后往前,是因为maxHeapify假定调用结点的左右子树都已经为最大堆 // 单个元素(叶结点)很自然地是一个最大堆 Heap.maxHeapify(A, i); } } // 维护堆的性质 static maxHeapify(A, i) { let l = Heap.left(i); let r = Heap.right(i); let largest = i; // maxHeapify假定调用结点的左右子树都已经为最大堆 // 只是把调用结点i放到恰当的位置,以维护堆的性质 if(l <= A.heapSize && A[l].priority > A[i].priority) { largest = l; } if(r <= A.heapSize && A[r].priority > A[largest].priority) { largest = r; } if(largest != i) { let temp = A[i]; A[i] = A[largest]; A[largest] = temp; Heap.maxHeapify(A, largest); } } static left(i) { return 2 * i; } static right(i) { return 2 * i + 1; } static parent(i) { return Math.floor(i / 2); } static extractMax(A) { if(A.heapSize < 1) return null; let max = A[1]; A[1] = A[A.heapSize]; A.heapSize = A.heapSize - 1; Heap.maxHeapify(A, 1); return max; } static increasePriority(A, i, newPriority) { if(newPriority < A[i].priority) { return; } let temp = A[i]; // 待插入元素 temp.priority = newPriority; while(i > 1 && A[Heap.parent(i)].priority < newPriority) { A[i] = A[Heap.parent(i)]; i = Heap.parent(i); } // 寻找合适的插入位置 A[i] = temp; // 插入元素 } }
最小优先队列(可以用在huffman编码中):
// 最小优先队列 class PriorityQueue { constructor() { this.A = []; Heap.buildMinHeap(this.A); } isEmpty() { return this.A.heapSize == 0; } size() { return this.A.heapSize; } insertWithPriority(x, priority) { this.A.heapSize += 1; this.A[this.A.heapSize] = { x: x, priority: Infinity }; Heap.decreasePriority(this.A, this.A.heapSize, priority); } pullLowestPriorityElement() { if(this.A.heapSize == 0) { return null; } else { return Heap.extractMin(this.A).x; } } peek() { return this.A[1].x; } } // 改进版本3,专门用来写最小优先队列。 // 每个数组元素有两个属性:x和priority,后者决定位置,前者是实际存储的内容 class Heap { // 把数组A转化为最小堆 static buildMinHeap(A) { A.unshift(undefined); // 便于后续的下标计算 A.heapSize = A.length - 1; // 实际多存了一个undefined for(let i = Math.floor(A.heapSize / 2); i >= 1; --i) { // 对所有非叶结点调用一次minHeapify // 之所以下标从后往前,是因为minHeapify假定调用结点的左右子树都已经为最小堆 // 单个元素(叶结点)很自然地是一个最小 Heap.minHeapify(A, i); } } // 维护堆的性质 static minHeapify(A, i) { let l = Heap.left(i); let r = Heap.right(i); let smallest = i; // minHeapify假定调用结点的左右子树都已经为最小堆 // 只是把调用结点i放到恰当的位置,以维护堆的性质 if(l <= A.heapSize && A[l].priority < A[i].priority) { smallest = l; } if(r <= A.heapSize && A[r].priority < A[smallest].priority) { smallest = r; } if(smallest != i) { let temp = A[i]; A[i] = A[smallest]; A[smallest] = temp; Heap.minHeapify(A, smallest); } } static left(i) { return 2 * i; } static right(i) { return 2 * i + 1; } static parent(i) { return Math.floor(i / 2); } static extractMin(A) { if(A.heapSize < 1) return null; let min = A[1]; A[1] = A[A.heapSize]; A.heapSize = A.heapSize - 1; Heap.minHeapify(A, 1); return min; } static decreasePriority(A, i, newPriority) { if(newPriority > A[i].priority) { return; } let temp = A[i]; // 待插入元素 temp.priority = newPriority; while(i > 1 && A[Heap.parent(i)].priority > newPriority) { A[i] = A[Heap.parent(i)]; i = Heap.parent(i); } // 寻找合适的插入位置 A[i] = temp; // 插入元素 } }