JAVA连接数据库 #03# HikariCP
为什么用数据库连接池?
为什么要用数据库连接池?
如果我们分析一下典型的【连接数据库】所涉及的步骤,我们将理解为什么:
- 使用数据库驱动程序打开与数据库的连接
- 打开TCP套接字以读取/写入数据
- 通过套接字读取/写入数据
- 关闭连接
- 关闭套接字
很明显,【连接数据库】是相当昂贵的操作,因此,应该想办法尽可能地减少、避免这种操作。
这就是数据库连接池发挥作用的地方。通过简单地实现数据库连接容器(允许我们重用大量现有连接),我们可以有效地节省执行大量昂贵【连接数据库】的成本,从而提高数据库驱动应用程序的整体性能。
↑ 译自 A Simple Guide to Connection Pooling in Java ,有删改
HikariCP快速入门
HikariCP是一个轻量级的高性能JDBC连接池。GitHub链接:https://github.com/brettwooldridge/HikariCP
1、依赖
- HikariCP
- slf4j (不需要日志实现也能跑)
- logback-core
- logback-classic
1和2以及相应数据库的JDBC驱动是必要的,日志实现可以用其它方案。
2、简单的草稿程序
package org.sample.dao; import com.zaxxer.hikari.HikariConfig; import com.zaxxer.hikari.HikariDataSource; import org.sample.entity.Profile; import org.sample.exception.DaoException; import java.sql.Connection; import java.sql.PreparedStatement; import java.sql.SQLException; public class Test { private static HikariConfig config = new HikariConfig(); private static HikariDataSource ds; static { config.setJdbcUrl("jdbc:mysql://127.0.0.1:3306/profiles?characterEncoding=utf8"); config.setUsername("root"); config.setPassword("???????"); config.addDataSourceProperty("cachePrepStmts", "true"); config.addDataSourceProperty("prepStmtCacheSize", "250"); config.addDataSourceProperty("prepStmtCacheSqlLimit", "2048"); ds = new HikariDataSource(config); config = new HikariConfig(); } public static Connection getConnection() throws SQLException { return ds.getConnection(); } private Test(){} public static void main(String[] args) { Profile profile = new Profile(); profile.setUsername("testname3"); profile.setPassword("123"); profile.setNickname("testnickname"); int i = 0; try { Connection conn = Test.getConnection(); String sql = "INSERT ignore INTO `profiles`.`profile` (`username`, `password`, `nickname`) " + "VALUES (?, ?, ?)"; // 添加ignore出现重复不会抛出异常而是返回0 try (PreparedStatement ps = conn.prepareStatement(sql)) { ps.setString(1, profile.getUsername()); ps.setString(2, profile.getPassword()); ps.setString(3, profile.getNickname()); i = ps.executeUpdate(); } } catch (SQLException e) { throw new DaoException(e); } System.out.println(i); } }
3、设置连接池参数(只列举常用的)
一台四核的电脑基本可以全部采用默认设置?
① autoCommit:控制由连接池所返回的connection默认的autoCommit状况。默认值为是true。
② connectionTimeout:该参数决定无可用connection时的最长等待时间,超时将抛出SQLException。允许的最小值为250,默认值是30000(30秒)。
③ maximumPoolSize:该参数控制连接池所允许的最大连接数(包括在用连接和空闲连接)。基本上,此值将确定应用程序与数据库实际连接的最大数量。它的合理值最好由你的具体执行环境确定。当连接池达到最大连接数,并且没有空闲连接时,调用getConnection()将会被阻塞,最长等待时间取决于connectionTimeout。 对于这个值设定多少比较好,涉及的东西有点多,详细可参看About Pool Sizing,一般可以简单用这个公式计算:连接数 = ((核心数 * 2) + 有效磁盘数),默认值是10。
④ minimumIdle:控制最小的空闲连接数,当连接池内空闲的连接数少于minimumIdle,且总连接数不大于maximumPoolSize时,HikariCP会尽力补充新的连接。出于性能方面的考虑,不建议设置此值,而是让HikariCP把连接池当做固定大小的处理,minimumIdle的默认值等于maximumPoolSize。
⑤ maxLifetime:用来设置一个connection在连接池中的最大存活时间。一个使用中的connection永远不会被移除,只有在它关闭后才会被移除。用微小的负衰减来避免连接池中的connection一次性大量灭绝。我们强烈建议设置这个值,它应该比数据库所施加的时间限制短个几秒。如果设置为0,则表示connection的存活时间为无限大,当然还要受制于idleTimeout。默认值是1800000(30分钟)。(不大理解,然而mysql的时间限制不是8个小时???)
⑥ idleTimeout:控制一个connection所被允许的最大空闲时间。当空闲的连接数超过minimumIdle时,一旦某个connection的持续空闲时间超过idleTimeout,就会被移除。只有当minimumIdle小于maximumPoolSize时,这个参数才生效。默认值是600000(10分钟)。
⑦ poolName:用户定义的连接池名称,主要显示在日志记录和JMX管理控制台中,以标识连接池以及它的配置。默认值由HikariCP自动生成。
4、MySQL配置
jdbcUrl=jdbc:mysql://127.0.0.1:3306/profiles?characterEncoding=utf8
username=root
password=test
dataSource.cachePrepStmts=true
dataSource.prepStmtCacheSize=250
dataSource.prepStmtCacheSqlLimit=2048
dataSource.useServerPrepStmts=true
dataSource.useLocalSessionState=true
dataSource.rewriteBatchedStatements=true
dataSource.cacheResultSetMetadata=true
dataSource.cacheServerConfiguration=true
dataSource.elideSetAutoCommits=true
dataSource.maintainTimeStats=false
5、修改Java连接数据库#02#中的代码
① HikariCPDataSource.java,hikari.properties如上所示。
package org.sample.db; import com.zaxxer.hikari.HikariConfig; import com.zaxxer.hikari.HikariDataSource; import java.sql.Connection; import java.sql.SQLException; public class HikariCPDataSource { private static final String HIKARI_PROPERTIES_FILE_PATH = "/hikari.properties"; private static HikariConfig config = new HikariConfig(HIKARI_PROPERTIES_FILE_PATH); private static HikariDataSource ds = new HikariDataSource(config); public static Connection getConnection() throws SQLException { return ds.getConnection(); } }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
② ConnectionFactory.java
package org.sample.db; import java.sql.Connection; import java.sql.SQLException; /** * 线程池版 */ public class ConnectionFactory { private ConnectionFactory() { // Exists to defeat instantiation } private static final ThreadLocal<Connection> LocalConnectionHolder = new ThreadLocal<>(); public static Connection getConnection() throws SQLException { Connection conn = LocalConnectionHolder.get(); if (conn == null || conn.isClosed()) { conn = HikariCPDataSource.getConnection(); LocalConnectionHolder.set(conn); } return conn; } public static void removeLocalConnection() { LocalConnectionHolder.remove(); } }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
③ ConnectionProxy.java(代码分层有错误!)
package org.sample.manager; import org.sample.db.ConnectionFactory; import org.sample.exception.DaoException; import java.sql.Connection; /** * 对应线程池版本ConnectionFactory,方便在Service层进行事务控制 */ public class ConnectionProxy { public static void setAutoCommit(boolean autoCommit) { try { Connection conn = ConnectionFactory.getConnection(); conn.setAutoCommit(autoCommit); } catch (Exception e) { throw new DaoException(e); } } public static void commit() { try { Connection conn = ConnectionFactory.getConnection(); conn.commit(); } catch (Exception e) { throw new DaoException(e); } } public static void rollback() { try { Connection conn = ConnectionFactory.getConnection(); conn.rollback(); } catch (Exception e) { throw new DaoException(e); } } public static void close() { try { Connection conn = ConnectionFactory.getConnection(); conn.close(); ConnectionFactory.removeLocalConnection(); } catch (Exception e) { throw new DaoException(e); } } // TODO 设置隔离级别 }
其它地方把LocalConnectionFactory改为ConnectionFactory,LocalConnectionProxy改为ConnectionProxy就行了!后续如果要换其它连接池,只需要改变ConnectionFactory.java里的一小点代码。
6、测试
package org.sample.manager; import org.junit.Test; import org.sample.dao.ProfileDAO; import org.sample.dao.impl.ProfileDAOImpl; import org.sample.entity.Profile; import org.sample.exception.DaoException; import java.util.ArrayList; import java.util.Collections; import java.util.LinkedList; import java.util.List; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import java.util.logging.Logger; import static org.junit.Assert.assertTrue; public class DaoTest { private static final Logger LOGGER = Logger.getLogger(DaoTest.class.getName()); private static final String ORIGIN_STRING = "hello"; private static String RandomString() { return Math.random() + ORIGIN_STRING + Math.random(); } private static Profile RandomProfile() { Profile profile = new Profile(RandomString(), ORIGIN_STRING, RandomString()); return profile; } private static final ProfileDAO PROFILE_DAO = ProfileDAOImpl.INSTANCE; private class Worker implements Runnable { private final Profile profile = RandomProfile(); @Override public void run() { LOGGER.info(Thread.currentThread().getName() + " has started his work"); try { // ConnectionProxy.setAutoCommit(false); PROFILE_DAO.saveProfile(profile); // ConnectionProxy.commit(); } catch (DaoException e) { e.printStackTrace(); } finally { try { ConnectionProxy.close(); } catch (DaoException e) { e.printStackTrace(); } } LOGGER.info(Thread.currentThread().getName() + " has finished his work"); } } /** * numTasks指并发线程数。 * -- 不用连接池: * numTasks<=100正常运行,完成100个任务耗时大概是550ms~600ms * numTasks>100报错“too many connections”,偶尔不报错,这是来自mysql数据库本身的限制 * -- 采用连接池 * numTasks>10000仍正常运行,完成10000个任务耗时大概是26s(池大小是10) */ private static final int NUM_TASKS = 2000; @Test public void test() throws Exception { List<Runnable> workers = new LinkedList<>(); for(int i = 0; i != NUM_TASKS; ++i) { workers.add(new Worker()); } assertConcurrent("Dao test ", workers, Integer.MAX_VALUE); } public static void assertConcurrent(final String message, final List<? extends Runnable> runnables, final int maxTimeoutSeconds) throws InterruptedException { final int numThreads = runnables.size(); final List<Throwable> exceptions = Collections.synchronizedList(new ArrayList<Throwable>()); final ExecutorService threadPool = Executors.newFixedThreadPool(numThreads); try { final CountDownLatch allExecutorThreadsReady = new CountDownLatch(numThreads); final CountDownLatch afterInitBlocker = new CountDownLatch(1); final CountDownLatch allDone = new CountDownLatch(numThreads); for (final Runnable submittedTestRunnable : runnables) { threadPool.submit(new Runnable() { public void run() { allExecutorThreadsReady.countDown(); try { afterInitBlocker.await(); submittedTestRunnable.run(); } catch (final Throwable e) { exceptions.add(e); } finally { allDone.countDown(); } } }); } // wait until all threads are ready assertTrue("Timeout initializing threads! Perform long lasting initializations before passing runnables to assertConcurrent", allExecutorThreadsReady.await(runnables.size() * 10, TimeUnit.MILLISECONDS)); // start all test runners afterInitBlocker.countDown(); assertTrue(message +" timeout! More than" + maxTimeoutSeconds + "seconds", allDone.await(maxTimeoutSeconds, TimeUnit.SECONDS)); } finally { threadPool.shutdownNow(); } assertTrue(message + "failed with exception(s)" + exceptions, exceptions.isEmpty()); } }
本来打算调整连接池参数观察对性能影响的,结果发现即使参数不变,运行时间起伏也有点大。所以暂时先这样了。。。具体原因待探究!