中国大学MOOC_浙大数据结构_第四周编程作业
第四周编程作业
是否同一棵二叉搜索树
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> #define MAX 10 + 1 typedef struct _BinTree* BinTree; struct _BinTree { int val; BinTree left; BinTree right; }; typedef BinTree Node; BinTree insert(BinTree bst, int val) { if (bst == NULL) { bst = (BinTree) malloc(sizeof(struct _BinTree)); bst->left = bst->right = NULL; bst->val = val; } else { if (val < bst->val) { bst->left = insert(bst->left, val); // 只有栈顶的调用用到了返回值 // 其余调用则是把自己赋给自己 } else { bst->right = insert(bst->right, val); } } return bst; } // 保存初始插入序列的先序遍历 int preOrder[MAX]; int index = 0; void preOrderTraversal(BinTree root) { if (root) { preOrder[index++] = root->val; preOrderTraversal(root->left); preOrderTraversal(root->right); } } // 保存需要检查的先序遍历 int preOrder2[MAX]; int index2 = 0; void preOrderTraversalTwo(BinTree root) { if (root) { preOrder2[index2++] = root->val; preOrderTraversalTwo(root->left); preOrderTraversalTwo(root->right); } } bool check(int N) { for (int i = 0; i != N; ++i) { if (preOrder[i] != preOrder2[i]) return false; } return true; } void freeTree(BinTree root) { if (root->left) freeTree(root->left); if (root->right) freeTree(root->right); free(root); } int main() { BinTree root; int N, L, temp; while (true) { scanf("%d", &N); if (N == 0) break; scanf("%d", &L); // 1. 读入初始插入序列 root = NULL; index = 0; for (int i = 0; i != N; ++i) { scanf("%d", &temp); root = insert(root, temp); } preOrderTraversal(root); freeTree(root); for (int i = 0; i != L; ++i) { // 2. 读入需检查的序列 root = NULL; index2 = 0; for (int i = 0; i != N; ++i) { scanf("%d", &temp); root = insert(root, temp); } preOrderTraversalTwo(root); freeTree(root); printf("%s\n", check(N) ? "Yes" : "No"); } } return 0; }
Root of AVL Tree
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> typedef struct _BinTree* BinTree; struct _BinTree { int val; BinTree left; BinTree right; int height; }; typedef BinTree Node; Node createAVLNode(int val) { Node result = (Node) malloc(sizeof(struct _BinTree)); result->val = val; result->left = result->right = NULL; result->height = 1; return result; } int getH(BinTree bst) { if (bst) { return bst->height; } return 0; } int maxH(BinTree bst1, BinTree bst2) { int h1, h2; h1 = getH(bst1); h2 = getH(bst2); return h1 > h2 ? h1 : h2; } int getBF(BinTree bst) { // get balance factor return getH(bst->left) - getH(bst->right); } BinTree solveLL(BinTree oldRoot) { BinTree newRoot = oldRoot->left; // 中序不变,改变结构 oldRoot->left = newRoot->right; newRoot->right = oldRoot; oldRoot->height = maxH(oldRoot->left, oldRoot->right) + 1; // oldRoot变为儿子需要先更新 newRoot->height = maxH(newRoot->left, newRoot->right) + 1; return newRoot; } BinTree solveRR(BinTree oldRoot) { BinTree newRoot = oldRoot->right; // 中序不变,改变结构 oldRoot->right = newRoot->left; newRoot->left = oldRoot; oldRoot->height = maxH(oldRoot->left, oldRoot->right) + 1; newRoot->height = maxH(newRoot->left, newRoot->right) + 1; return newRoot; } BinTree solveLR(BinTree oldRoot) { oldRoot->left = solveRR(oldRoot->left); return solveLL(oldRoot); } BinTree solveRL(BinTree oldRoot) { oldRoot->right = solveLL(oldRoot->right); return solveRR(oldRoot); } BinTree AVLInsert(BinTree bst, int val) { if (!bst) { bst = createAVLNode(val); } if (val < bst->val) { bst->left = AVLInsert(bst->left, val); if (getBF(bst) == 2) { // 当前结点即是“问题的发现者” if (val < bst->left->val) { // LL型不平衡 bst = solveLL(bst); } else { // LR型不平衡 bst = solveLR(bst); } } } else if (val > bst->val) { bst->right = AVLInsert(bst->right, val); if (getBF(bst) == -2) { if (val > bst->right->val) { // RR型不平衡 bst = solveRR(bst); } else { // RL型不平衡 bst = solveRL(bst); } } } bst->height = maxH(bst->left, bst->right) + 1; // 无需再递归计算,在递归插入元素的同时计算即可。 return bst; } int main() { int N, temp; BinTree root = NULL; scanf("%d", &N); while (N--) { scanf("%d", &temp); root = AVLInsert(root, temp); } printf("%d", root->val); return 0; }
Complete Binary Search Tree
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> #define MAXN 1000 + 1 int keys[MAXN]; int partition(int arr[], int i, int j); void myQsort(int arr[], int i, int j); typedef struct _BSTNode* BSTNode; struct _BSTNode { int val; BSTNode left; BSTNode right; }; BSTNode createBSTNode(int val); BSTNode createCBT(int N); // 创建一个具有N个空结点的完全二叉树 typedef struct _QNode* QNode; struct _QNode { BSTNode bstNode; QNode next; }; QNode createQNode(BSTNode bstNode); bool isEmpty(QNode head); void addQ(QNode head, BSTNode bstNode); BSTNode deleteQ(QNode head); void freeQ(QNode node); QNode inorderQueue; void inorderTraversal(BSTNode root) { if (root) { inorderTraversal(root->left); addQ(inorderQueue, root); inorderTraversal(root->right); } } void levelorderTraversal(BSTNode root) { if (root) { printf("%d", root->val); QNode head = createQNode(NULL); if (root->left) { addQ(head, root->left); } if (root->right) { addQ(head, root->right); } BSTNode temp; while (!isEmpty(head)) { temp = deleteQ(head); printf(" %d", temp->val); if (temp->left) { addQ(head, temp->left); } if (temp->right) { addQ(head, temp->right); } } } } int main() { int N; scanf("%d", &N); for (int i = 0; i != N; ++i) { scanf("%d", &keys[i]); } myQsort(keys, 0, N - 1); BSTNode root = createCBT(N); inorderQueue = createQNode(NULL); inorderTraversal(root); // 结果保存到inorderQueue for (int i = 0; i != N; ++i) { deleteQ(inorderQueue)->val = keys[i]; } levelorderTraversal(root); return 0; } int partition(int arr[], int i, int j) { int x = arr[i]; while (i < j) { while (arr[j] >= x && i < j) j--; arr[i] = arr[j]; while (arr[i] <= x && i < j) i++; arr[j] = arr[i]; } arr[i] = x; return i; } void myQsort(int arr[], int i, int j) { if (i >= j) { return; } else { int mid = partition(arr, i, j); myQsort(arr, i, mid); myQsort(arr, mid + 1, j); } } BSTNode createBSTNode(int val) { BSTNode result = (BSTNode) malloc(sizeof(struct _BSTNode)); result->val = val; result->left = result->right = NULL; return result; } BSTNode createCBT(int N) { BSTNode root, newNode, parent; QNode head = createQNode(NULL); parent = root = createBSTNode(-1); for (int i = 1; i != N; ++i) { // 1. 创建新结点 newNode = createBSTNode(-1); // 2. 更新parent if (parent->left && parent->right) { parent = deleteQ(head); } // 3. 放新结点 if (parent->left) { parent->right = newNode; } else { parent->left = newNode; } // 4. 新结点入队 addQ(head, newNode); } freeQ(head); return root; } QNode createQNode(BSTNode bstNode) { QNode result = (QNode) malloc(sizeof(struct _QNode)); result->bstNode = bstNode; result->next = NULL; return result; } bool isEmpty(QNode head) { return head->next == NULL; } void addQ(QNode head, BSTNode bstNode) { QNode temp = head; while (temp->next) { temp = temp->next; } temp->next = createQNode(bstNode); } BSTNode deleteQ(QNode head) { if (isEmpty(head)) return NULL; QNode temp = head->next; head->next = temp->next; BSTNode bstNode = temp->bstNode; free(temp); return bstNode; } void freeQ(QNode node) { if (node) { freeQ(node->next); free(node); } }
二叉搜索树的操作集
BinTree createNode(ElementType x) { BinTree bt = (BinTree) malloc(sizeof(struct TNode)); bt->Left = bt->Right = NULL; bt->Data = x; return bt; } BinTree Insert( BinTree BST, ElementType X ) { if (BST == NULL) { BST = createNode(X); } else { if (X < BST->Data) { BST->Left = Insert(BST->Left, X); } else if (X > BST->Data) { BST->Right = Insert(BST->Right, X); } } return BST; } Position Find( BinTree BST, ElementType X ) { while (BST) { if (X > BST->Data) { BST = BST->Right; } else if (X < BST->Data) { BST = BST->Left; } else { break; } } return BST; } Position FindMin( BinTree BST ) { if (BST) { while (BST->Left) { BST = BST->Left; } } return BST; } Position FindMax( BinTree BST ) { if (BST) { while (BST->Right) { BST = BST->Right; } } return BST; } BinTree Delete( BinTree BST, ElementType X ) { Position temp; if (BST == NULL) { printf("Not Found\n"); } else { if (X < BST->Data) { BST->Left = Delete(BST->Left, X); } else if (X > BST->Data) { BST->Right = Delete(BST->Right, X); } else { if (BST->Left && BST->Right) { temp = FindMin(BST->Right); BST->Data = temp->Data; BST->Right = Delete(BST->Right, BST->Data); } else { temp = BST; if (BST->Left) { BST = BST->Left; } else { BST = BST->Right; } free(temp); } } } return BST; }