中国大学MOOC_浙大数据结构_第三周编程作业

第三周编程作业

1、树的同构

利用结构数组表示二叉树。

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h> // bool true false
#define MAX 10 + 1
#define SIZE 26 + 1
#define NONE -1

struct RawData {
    char ch;
    int left;
    int right; // 用 -1 表示不存在 
};
typedef struct RawData* MyRawData;

struct Tree {
    int a;
    int b;
};
typedef struct Tree* MyTree;

MyRawData mrds1[MAX];
MyRawData mrds2[MAX];
MyTree tr1[SIZE] = {NULL};
MyTree tr2[SIZE] = {NULL};

void rawData2tree(int N, MyRawData mrds[], MyTree tr[])
{
    int k, temp;
    for (int i = 0; i != N; ++i) {
        // 1. 计算字母所对应的下标 
        k = mrds[i]->ch - 'A';    
        
        // 2. 初始化结点 
        tr[k] = (MyTree) malloc(sizeof(struct Tree));
        tr[k]->a = NONE;
        tr[k]->b = NONE;    
        
        // 3. 将子结点信息保存到当前下标的结点 
        if (mrds[i]->left != NONE) {
            tr[k]->a = mrds[mrds[i]->left]->ch;
            // 将 结点值 直接保存到 a b 
        }
        if (mrds[i]->right != NONE) {
            tr[k]->b = mrds[mrds[i]->right]->ch;
        }        
        
        // 4. 排序便于比较
        if (tr[k]->a < tr[k]->b) {
            temp = tr[k]->a;
            tr[k]->a = tr[k]->b;
            tr[k]->b = temp;
        }
    }
}

bool check(MyTree tr1[], MyTree tr2[])
{
    for (int i = 0; i != SIZE; ++i) {
        if (tr1[i]) {
            // 相同结点是否存在? 
            if (tr2[i]) {
                // 其子结点是否一致
                if (tr1[i]->a == tr2[i]->a && tr1[i]->b == tr2[i]->b) { 
                    // 
                } else {
                    return false;
                }
            } else {
                return false;
            }
        }
    }
    
    return true;
}

int main()
{
    int N;
    
    scanf("%d\n", &N); // \n不能漏!!!否则会被下面的scanf("%c", &c)读走! 
    
    // 1. 保存原始数据 
    char c1, c2, c3;
    for (int i = 0; i != N; ++i) {
        mrds1[i] = (MyRawData) malloc(sizeof(struct RawData));
        scanf("%c %c %c\n", &c1, &c2, &c3);
        mrds1[i]->ch = c1;
        mrds1[i]->left = c2 == '-' ? NONE : c2 - '0'; 
        mrds1[i]->right = c3 == '-' ? NONE : c3 - '0';
    }
    
    int N2;
    scanf("%d\n", &N2);
    if (N != N2) {
        printf("No");
        return 0;
    }
    for (int i = 0; i != N2; ++i) {
        mrds2[i] = (MyRawData) malloc(sizeof(struct RawData));
        scanf("%c %c %c\n", &c1, &c2, &c3);
        mrds2[i]->ch = c1;
        mrds2[i]->left = c2 == '-' ? NONE : c2 - '0'; 
        mrds2[i]->right = c3 == '-' ? NONE : c3 - '0';
    }    
    
    
    // 2. 将树映射到以 结点值 为下标的数组中 
    rawData2tree(N, mrds1, tr1);
    rawData2tree(N, mrds2, tr2);
    
    // 3. 同一 下标的结点应该具有相同的子结点
    printf("%s\n", check(tr1, tr2) ? "Yes" : "No");
    return 0;
}

 

2、List Leaves

层序遍历

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h> // bool true false
#include <memory.h> // memset 或者 <string.h> 
#define MAX_SIZE 10 + 1


int L[MAX_SIZE] = {-1}, R[MAX_SIZE] = {-1};
// R[MAX_SIZE] = {-1} 只有首个元素被初始化为 -1  

int buildTree()
{
    memset(L, -1, sizeof(L));
    memset(R, -1, sizeof(R));

    int N, tmpL, tmpR;
            
    scanf("%d\n", &N);        
    for (int i = 0; i != N; ++i) { 
        scanf("%c %c\n", &tmpL, &tmpR);
        
        if (tmpL != '-') {
            L[i] = tmpL - '0'; 
        }
        
        if (tmpR != '-') {
            R[i] = tmpR - '0';
        }
    }
    
    int root;
    int flag[MAX_SIZE];
    memset(flag, 0, sizeof(flag));
    for (int i = 0; i != N; ++i) {
        if (L[i] != -1) flag[L[i]] = 1;
        if (R[i] != -1) flag[R[i]] = 1;
    }
    for (int i = 0; i != N; ++i) {
        if (flag[i] == 0) {
            root = i;
            break;
        }
    }
    
    return root;    
}

struct _Queue {
    int data[MAX_SIZE];
    int front, rear;
};
typedef struct _Queue* Queue;

Queue buildQueue()
{
    Queue q = (Queue) malloc(sizeof(struct _Queue));
    q->front = q->rear = -1;
    return q;
}

void push(Queue q, int x)
{
    q->rear++;
    q->data[q->rear] = x;
}

int pop(Queue q)
{
    if (q->front + 1 > q->rear) return -1;
    q->front++;
    return q->data[q->front];
}

int ans[MAX_SIZE];
void levelOrderTraversal(int root)
{
    memset(ans, -1, sizeof(ans));
    
    Queue q = buildQueue();
    push(q, root);
    int x , i = 0;
    while ((x = pop(q)) != -1) {
        if (L[x] != -1) {
            push(q, L[x]);
        }
        if (R[x] != -1) {
            push(q, R[x]);
        }
        if (L[x] == -1 && R[x] == -1) {
            ans[i++] = x;
        }
    }
}

void printAns()
{
    int k = 0;
    printf("%d", ans[0]);
    while (ans[++k] != -1) {
        printf(" %d", ans[k]);
    }    
}

int main()
{
    int root = buildTree();
    levelOrderTraversal(root);
    printAns();    
    return 0;
}

 

3、Tree Traversals Again 

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h> 
#include <string.h> 
#define MAX 100

typedef struct _BinTree* BinTree;
typedef BinTree Node;
struct _BinTree {
    int data;
    BinTree left;
    BinTree right;
    bool visited;
};

Node buildNode(int data)
{
    Node node = (Node) malloc(sizeof(struct _BinTree));
    node->data = data;
    node->left = NULL;
    node->right = NULL;    
    node->visited = false;
    
    return node;
}

typedef struct _Stack* Stack;
struct _Stack {
    Node nodes[MAX];
    int top;
};

Stack buildStack()
{
    Stack s = (Stack) malloc(sizeof(struct _Stack));
    s->top = -1;
    
    return s;
}

bool push(Stack s, Node node)
{
    if (s->top == MAX - 1) return false;
    s->nodes[++(s->top)] = node;
    
    return true;
}

bool isEmpty(Stack s)
{
    return s->top == -1;
}

Node getTop(Stack s)
{
    if (isEmpty(s)) return NULL;
    return s->nodes[s->top];
}

Node pop(Stack s)
{
    if (isEmpty(s)) return NULL;
    return s->nodes[(s->top)--];
}

int ans[MAX];
int ans_i = 0;
void postTraversal(Node root)
{
    if (root) {
        postTraversal(root->left);
        postTraversal(root->right);
        ans[ans_i++] = root->data;
    }
}

int main()
{
    BinTree root, tempNode, lastPop = NULL;
    int n, tempData;
    char ch[5];
    
    scanf("%d", &n);
    scanf("%s %d", ch, &tempData);
    root = buildNode(tempData);
    
    Stack s = buildStack();
    push(s, root);
    // 边模拟入栈出栈边构造树。
    for (int i = 1; i != 2*n; ++i) {
        scanf("%s", ch);
        if (ch[1] == 'u') {
            scanf("%d", &tempData);
            tempNode = buildNode(tempData);            
            if (lastPop != NULL) {
                lastPop->right = tempNode;
                lastPop = NULL;
            } else {
                getTop(s)->left = tempNode;
            }
            push(s, tempNode);
        }
        if (ch[1] == 'o') {
            lastPop = pop(s);
        }
    }
    
    postTraversal(root);
    for (int i = 0; i != n - 1; ++i) {
        printf("%d ", ans[i]);
    }
    printf("%d", ans[n - 1]);
    
    return 0;
}

 

用堆栈实现后序遍历的非递归程序

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h> 
#include <string.h> 
#define MAX 100

typedef struct _BinTree* BinTree;
struct _BinTree {
    int data;
    BinTree left;
    BinTree right;
};

typedef struct _Block* Block;  
struct _Block { // 代码块
    BinTree node;
    int statement; 
};

typedef struct _Stack* Stack;
struct _Stack {
    Block blocks[MAX];
    int top;
};

BinTree buildNode(int data)
{
    BinTree node = (BinTree) malloc(sizeof(struct _BinTree));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    
    return node;
}

Stack buildStack()
{
    Stack s = (Stack) malloc(sizeof(struct _Stack));
    s->top = -1;
    
    return s;
}

bool push(Stack s, Block b)
{
    if (s->top == MAX - 1) return false;
    s->blocks[++(s->top)] = b;
    
    return true;
}

bool isEmpty(Stack s)
{
    return s->top == -1;
}

Block getTop(Stack s)
{
    if (isEmpty(s)) return NULL;
    return s->blocks[s->top];
}

Block pop(Stack s)
{
    if (isEmpty(s)) return NULL;
    return s->blocks[(s->top)--];
}

Block buildBlock(BinTree node)
{
    Block b = (Block) malloc(sizeof(struct _Block));
    b->node = node;
    b->statement = 0;
    
    return b;
}

void inorderTraversal(BinTree root)
{
    Block first = buildBlock(root);
    
    Stack s = buildStack();
    push(s, first);
    
    Block curBlock;
    BinTree curNode;
    while (!isEmpty(s)) {
        curBlock = getTop(s);
        curNode = curBlock->node;
        if (curBlock->statement == 0) {    
            curBlock->statement++;        
            if (curNode->left != NULL) {
                push(s, buildBlock(curNode->left));                
                continue; 
                // 将当前代码块暂时压入栈底,执行新的代码块 
            }
        }
        if (curBlock->statement == 1) {
            curBlock->statement++;
            printf("%d ", curNode->data);            
        }
        if (curBlock->statement == 2) {
            curBlock->statement++;    
            if (curNode->right != NULL) {                
                push(s, buildBlock(curNode->right));
                continue;
            }        
        }
        pop(s); // 当前代码块相当于执行完了 
    }    
    printf("(inorderTraversal)\n");
} 

void postorderTraversal(BinTree root)
{
    Block first = buildBlock(root);
    
    Stack s = buildStack();
    push(s, first);
    
    Block curBlock;
    BinTree curNode;
    while (!isEmpty(s)) {
        curBlock = getTop(s);
        curNode = curBlock->node;
        if (curBlock->statement == 0) {    
            curBlock->statement++;        
            if (curNode->left != NULL) {
                push(s, buildBlock(curNode->left));                
                continue; 
                // 将当前代码块暂时压入栈底,执行新的代码块 
            }
        }
        if (curBlock->statement == 1) {
            curBlock->statement++;
            if (curNode->right != NULL) {                
                push(s, buildBlock(curNode->right));
                continue;
            }    
        
        }
        if (curBlock->statement == 2) {
            curBlock->statement++;
            printf("%d ", curNode->data);        
        }
        pop(s); 
        // 压入栈底是因为没有执行完,而弹出则表示代码块执行完了。 
    }    
    printf("(postorderTraversal)\n");
} 

int main()
{
    BinTree root = buildNode(1);
    // 手动创建一棵树
    BinTree node2 = buildNode(2);
    BinTree node3 = buildNode(3);
    BinTree node4 = buildNode(4);
    BinTree node5 = buildNode(5);
    BinTree node6 = buildNode(6);
    root->left = node2;
    root->right = node5;
    node2->left = node3;
    node2->right = node4;    
    node5->left = node6;
         
    inorderTraversal(root);
    postorderTraversal(root);
    
    return 0;
}

 

posted @ 2020-08-27 19:16  xkfx  阅读(369)  评论(0编辑  收藏  举报