中国大学MOOC_浙大数据结构_第二周编程作业

第二周编程作业

1、两个有序链表序列的合并

List Merge( List L1, List L2 ) {
    
    List temp, cur, result;
    
    // 0. 初始化
    result = (List) malloc(sizeof(struct Node));
    cur = result;
    
    while (L1->Next && L2->Next) {
        // 1. 比较 
        if (L1->Next->Data <= L2->Next->Data) {
            // 2. 取小的那个
            temp = L1->Next;
            // 3. 改造原链表 
            L1->Next = temp->Next;
        } else {             
            temp = L2->Next;            
            L2->Next = temp->Next;            
        }
        
        // 4. 插到结果链表尾部
        cur->Next = temp;
        cur = cur->Next;
    }
    
    // 5. 破坏条件
    cur->Next = L1->Next ? L1->Next : L2->Next;
    if (L1->Next) {
        L1->Next = NULL;
    } else {
        L2->Next = NULL;
    }    
    
    return result;
}

 

2、一元多项式的乘法与加法运算

#include <cstdio>
#include <cstdlib>

typedef struct polynomial_node* polynomial;
struct polynomial_node {
    int xs; // 系数 
    int zs; // 指数 
    polynomial next;    
};
typedef struct polynomial_node* Node;

polynomial readPoly() 
{
    int n, xs, zs; 
    // 1. 先读有多少位
    scanf("%d", &n);
    // 2. 创建多项式的头结点 
    polynomial result, temp, rear;
    rear = result = (polynomial) malloc(sizeof(struct polynomial_node));    
    while (n--) {
        // 3. 逐个添加多项式的项 
        scanf("%d %d", &xs, &zs);
        // 创建项 
        temp = (polynomial) malloc(sizeof(struct polynomial_node));
        temp->xs = xs;
        temp->zs = zs;
        // 添加项 
        rear->next = temp;
        rear = rear->next;
    }
    rear->next = NULL; 
    return result;    
}

void printPoly(polynomial poly)
{
    if (poly->next == NULL) {
        printf("0 0\n");
        return;
    }
    printf("%d %d", poly->next->xs, poly->next->zs);
    poly = poly->next;
    while (poly->next) {
        printf(" %d %d", poly->next->xs, poly->next->zs);
        poly = poly->next;
    }    
    printf("\n");
}

Node buildNode(int xs, int zs)
{
    Node node = (Node) malloc(sizeof(struct polynomial_node));
    node->xs = xs;
    node->zs = zs;
    node->next = NULL;
    
    return node;    
};

Node copyNode(Node node)
{
    return buildNode(node->xs, node->zs);
};

polynomial add(polynomial p1, polynomial p2)
{
    polynomial result, rear;
    rear = result = (polynomial) malloc(sizeof(struct polynomial_node));
    result->next = NULL; 
    
    p1 = p1->next;
    p2 = p2->next; // p1 和 p2 都有头结点 
        
    while (p1 && p2) {
        // 1. 比较
        if (p1->zs > p2->zs) { 
            // 2. 取大的那一项添加到结果链表
            rear->next = copyNode(p1);
            rear = rear->next; 
            
            // 3. p1指向下一位 
            p1 = p1->next;
            
        } else if (p1->zs < p2->zs) {
            rear->next = copyNode(p2);
            rear = rear->next; 
            
            p2 = p2->next;        
        } else {
            // 相等的情况,指数不变系数相加
            if (p1->xs + p2->xs != 0) {
                rear->next = buildNode(p1->xs + p2->xs, p1->zs);
                rear = rear->next;                
            }           
            
            p1 = p1->next;
            p2 = p2->next;            
        }
    } 
    
    // 4. 破坏条件
    while (p1) {
        rear->next = copyNode(p1);
        rear = rear->next;
        
        p1 = p1->next;    
    }
    
    while (p2) {
        rear->next = copyNode(p2);
        rear = rear->next;
        
        p2 = p2->next;            
    }

    return result;
}

// 多项式乘以一项 
polynomial multi0(polynomial p, Node node)
{
    polynomial result, rear;
    rear = result = (polynomial) malloc(sizeof(struct polynomial_node));
    result->next = NULL; 
    
    p = p->next; // p有头结点 
    while (p) {
        rear->next = buildNode(p->xs * node->xs, p->zs + node->zs);
        rear = rear->next;
                
        p = p->next;
    }
    
    return result;        
}

polynomial multi(polynomial p1, polynomial p2)
{
    // 将乘法运算转化为加法运算 
    polynomial result = (polynomial) malloc(sizeof(struct polynomial_node)), temp;
    result->next = NULL; 
        
    Node node = p2->next;    
    while (node) {
        temp = multi0(p1, node);
        result = add(result, temp);
        node = node->next;
    }
    
    return result;
}

int main()
{
    // 1. 读 2 个 多项式
    polynomial p1 = readPoly();
    polynomial p2 = readPoly();
    // 2. 相乘与相加
    polynomial pa = multi(p1, p2);
    polynomial pb = add(p1, p2);
    // 3. 输出结果 
    printPoly(pa);
    printPoly(pb);
    return 0;
}

 

3、Reversing Linked List

#include <stdio.h>
#include <stdlib.h>

struct Node {
    int val;
    int next;
};
typedef struct Node* MyNode;

MyNode buildNode(int val, int next)
{
    MyNode result = (MyNode) malloc(sizeof(struct Node));
    result->val = val;
    result->next = next;
    
    return result;
}

MyNode nodes[(int) 1e5 + 1];
int order[(int) 1e5 + 1];

void reverse(int a[], int i, int j)
{
    int tmp;
    while (i < j) {
        tmp = a[i];
        a[i] = a[j];
        a[j] = tmp;
        
        i++;
        j--;
    }
}

int main()
{
    int firstAddress, n, k, address, val, next;
    
    scanf("%d %d %d", &firstAddress, &n, &k);
    
    // 1. 读入数据 
    for (int i = 0; i != n; ++i) {
        scanf("%d %d %d", &address, &val, &next);
        nodes[address] = buildNode(val, next);
    }
    
    // 2. 将数据按原逻辑顺序存储到order数组 
    int realN = 0; // realN用于统计真正在链表上的结点数(有的结点不在链表上) 
    address = firstAddress;
    while (address != -1) {
        order[realN++] = address;             
        address = nodes[address]->next;        
    }
    
    // 3. 重排序 
    int batch = realN / k;
    for (int i = 0; i != batch; ++i) {
        reverse(order, i * k, (i + 1) * k - 1);
    }
    
    // 4. 输出结果
    for (int i = 0; i != realN - 1; ++i) {
        printf("%5.5d %d %5.5d\n", order[i], nodes[order[i]]->val, order[i + 1]);
    }
    printf("%5.5d %d -1\n", order[realN - 1], nodes[order[realN - 1]]->val);
    
    return 0;
}
 

 

4、Pop Sequence

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h> // bool true false
#define MAX 1000 + 1
#define STACK_EMPTY -1

struct Stack {
    int a[MAX];
    int maxSize;
    int top;    
};
typedef struct Stack* MyStack;

MyStack buildStack(int maxSize)
{
    MyStack result = (MyStack) malloc(sizeof(struct Stack));
    result->maxSize = maxSize;
    result->top = STACK_EMPTY;
    
    return result;
}

void clearStack(MyStack s)
{
    s->top = STACK_EMPTY;
}

bool push(MyStack s, int val)
{
    if (s->top == s->maxSize - 1) return false;
    s->a[++(s->top)] = val;
    return true;
}

void pop(MyStack s)
{
    if (s->top != STACK_EMPTY) {
        s->top = s->top - 1;
    }    
}

int topVal(MyStack s)
{
    if (s->top == STACK_EMPTY) return STACK_EMPTY;
    return s->a[s->top];
}

bool check(MyStack s, int N, int checkSeq[])
{
    int cur = 0;
    int curPushVal = 1;
    bool ok = false;
    for (int i = 0; i != N + N; ++i) {
        if (topVal(s) == checkSeq[cur]) {
            pop(s);
            cur++;
        } else {
            if (curPushVal > N) return false;
            ok = push(s, curPushVal++);
            if (!ok) return false;
        }        
    }
    return true;
}

int checkSeq[MAX];

int main()
{
    int M, N, K;
    // M (the maximum capacity of the stack), 
    // N (the length of push sequence), 
    // K (the number of pop sequences to be checked). 
    
    scanf("%d %d %d", &M, &N, &K);
    
    MyStack s = buildStack(M);
    
    for (int i = 0; i != K; ++i) {
        for (int j = 0; j != N; ++j) {
            scanf("%d", &checkSeq[j]);
        }
        printf("%s\n", check(s, N, checkSeq) ? "YES" : "NO");
        clearStack(s);
    }
        
    return 0;
}

 

posted @ 2020-08-16 12:21  xkfx  阅读(207)  评论(0编辑  收藏  举报