动态规划求解0-1背包问题

  0-1背包问题是: 一个背包能承受的最大容量为max_weight,  现在有n个物品, 它们的重量分别是{w1,w2,w3,......wn}, 和价值分别是{v1,v2,......vn}, 现在要求在满足背包装载的物品不超过最大容量的前提下,保证装载的物品的价值最大?

      动态规划求解过程可以这样理解:

  对于前i件物品,背包剩余容量为j时,所取得的最大价值(此时称为状态3)只依赖于两个状态。

  状态1:前i-1件物品,背包剩余容量为j。在该状态下,只要不选第i个物品,就可以转换到状态3。

  状态2:前i-1件物品,背包剩余容量为j-w[i]。在该状态下,选第i个物品,也可以转换到状态3。

  因为,这里要求最大价值,所以只要从状态1和状态2中选择最大价值较大的一个即可。 

   状态转换方程:

  dp( i,j ) = Max( dp( i-1, j ), dp( i-1, j-w[i] ) + v[i] )

  dp( i,j )表示前i件物品,背包剩余容量为j时,所取得的最大价值。 

  下面是java的demo代码:

private int[] v;
private int[] w;
private static int[][] c;
private int weight;

private int[] flag = new int[5];

public Greedy(int weight, int[] v, int[] w, int maxWeight) {
    this.w = w;
    this.v = v;
    this.weight = weight;
    this.c = new int[v.length][this.weight + 1];
}

public void solve() {
    int len = w.length;

    for (int i = 1; i < len; i++) {
        for (int j = 1; j <= weight; j++) {

            //第i件物品要么放,要么不放
            //如果第i件物品不放的话,就相当于求前i-1件物体放入容量为j的背包获得的最大价值
            //如果第i件物品放进去的话,就相当于求前i-1件物体放入容量为j-w[i]的背包获得的最大价值
            if (w[i] > j) {
                c[i][j] = c[i - 1][j];
            } else {
                // j > w[i]
                if (c[i - 1][j] > c[i - 1][j - w[i]] + v[i]) {
                    c[i][j] = c[i - 1][j];
                } else {
                    c[i][j] = c[i - 1][j - w[i]] + v[i];
                }
            }
        }
    }

    //下面求解哪个物品应该放进背包
    int i = v.length - 1, j = weight;
    while (c[i][j] != 0) {

        if (c[i - 1][j - w[i]] + v[i] == c[i][j]) {
            flag[i] = 1;
            j = j - w[i];
            i--;
        }
    }

    for (i = 1; i < v.length; i++) {
        if (flag[i] == 1) {
            System.out.print("重量" + w[i]);
            System.out.println("价值为" + v[i]);
        }
    }
}

public static void main(String[] args) {
    int[] v = {0, 4, 5, 6};
    int[] w = {0, 3, 4, 5};

    int weight = 10;
    Greedy knapsack = new Greedy(weight, v, w, weight);
    knapsack.solve();
}

 

  

posted on 2016-10-24 18:53  xjz1842  阅读(409)  评论(0编辑  收藏  举报

导航