[c++11]多线程编程(六)——条件变量(Condition Variable)
https://www.jianshu.com/p/c1dfa1d40f53
[c++11]多线程编程(六)——条件变量(Condition Variable)
<!-- 作者区域 -->
<div class="author">
<a class="avatar" href="/u/a549acfa2f33">
<img src="//upload.jianshu.io/users/upload_avatars/4427263/51aff4c0-f91b-4884-bdd0-f1e9bf4c13f4.jpg?imageMogr2/auto-orient/strip|imageView2/1/w/96/h/96" alt="96">
<!-- 文章内容 -->
<div data-note-content="" class="show-content">
<div class="show-content-free">
<p>互斥锁<code>std::mutex</code>是一种最常见的线程间同步的手段,但是在有些情况下不太高效。</p>
假设想实现一个简单的消费者生产者模型,一个线程往队列中放入数据,一个线程往队列中取数据,取数据前需要判断一下队列中确实有数据,由于这个队列是线程间共享的,所以,需要使用互斥锁进行保护,一个线程在往队列添加数据的时候,另一个线程不能取,反之亦然。用互斥锁实现如下:
#include <iostream>
#include <deque>
#include <thread>
#include <mutex>
std::deque<int> q;
std::mutex mu;
void function_1() {
int count = 10;
while (count > 0) {
std::unique_lock<std::mutex> locker(mu);
q.push_front(count);
locker.unlock();
std::this_thread::sleep_for(std::chrono::seconds(1));
count--;
}
}
void function_2() {
int data = 0;
while ( data != 1) {
std::unique_lock<std::mutex> locker(mu);
if (!q.empty()) {
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
} else {
locker.unlock();
}
}
}
int main() {
std::thread t1(function_1);
std::thread t2(function_2);
t1.join();
t2.join();
return 0;
}
//输出结果
//t2 got a value from t1: 10
//t2 got a value from t1: 9
//t2 got a value from t1: 8
//t2 got a value from t1: 7
//t2 got a value from t1: 6
//t2 got a value from t1: 5
//t2 got a value from t1: 4
//t2 got a value from t1: 3
//t2 got a value from t1: 2
//t2 got a value from t1: 1
可以看到,互斥锁其实可以完成这个任务,但是却存在着性能问题。
首先,function_1
函数是生产者,在生产过程中,std::this_thread::sleep_for(std::chrono::seconds(1));
表示延时1s
,所以这个生产的过程是很慢的;function_2
函数是消费者,存在着一个while
循环,只有在接收到表示结束的数据的时候,才会停止,每次循环内部,都是先加锁,判断队列不空,然后就取出一个数,最后解锁。所以说,在1s
内,做了很多无用功!这样的话,CPU占用率会很高,可能达到100%(单核)。如图:
解决办法之一是给消费者也加一个小延时,如果一次判断后,发现队列是空的,就惩罚一下自己,延时500ms
,这样可以减小CPU的占用率。
void function_2() {
int data = 0;
while ( data != 1) {
std::unique_lock<std::mutex> locker(mu);
if (!q.empty()) {
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
} else {
locker.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
}
如图:
然后困难之处在于,如何确定这个延时时间呢,假如生产者生产的很快,消费者却延时500ms
,也不是很好,如果生产者生产的更慢,那么消费者延时500ms
,还是不必要的占用了CPU。
这就引出了条件变量(condition variable),c++11
中提供了#include <condition_variable>
头文件,其中的std::condition_variable
可以和std::mutex
结合一起使用,其中有两个重要的接口,notify_one()
和wait()
,wait()
可以让线程陷入休眠状态,在消费者生产者模型中,如果生产者发现队列中没有东西,就可以让自己休眠,但是不能一直不干活啊,notify_one()
就是唤醒处于wait
中的其中一个条件变量(可能当时有很多条件变量都处于wait
状态)。那什么时刻使用notify_one()
比较好呢,当然是在生产者往队列中放数据的时候了,队列中有数据,就可以赶紧叫醒等待中的线程起来干活了。
使用条件变量修改后如下:
#include <iostream>
#include <deque>
#include <thread>
#include <mutex>
#include <condition_variable>
std::deque<int> q;
std::mutex mu;
std::condition_variable cond;
void function_1() {
int count = 10;
while (count > 0) {
std::unique_lock<std::mutex> locker(mu);
q.push_front(count);
locker.unlock();
cond.notify_one(); // Notify one waiting thread, if there is one.
std::this_thread::sleep_for(std::chrono::seconds(1));
count--;
}
}
void function_2() {
int data = 0;
while ( data != 1) {
std::unique_lock<std::mutex> locker(mu);
while(q.empty())
cond.wait(locker); // Unlock mu and wait to be notified
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
}
}
int main() {
std::thread t1(function_1);
std::thread t2(function_2);
t1.join();
t2.join();
return 0;
}
此时CPU的占用率也很低。
上面的代码有三个注意事项:
- 在
function_2
中,在判断队列是否为空的时候,使用的是while(q.empty())
,而不是if(q.empty())
,这是因为wait()
从阻塞到返回,不一定就是由于notify_one()
函数造成的,还有可能由于系统的不确定原因唤醒(可能和条件变量的实现机制有关),这个的时机和频率都是不确定的,被称作伪唤醒,如果在错误的时候被唤醒了,执行后面的语句就会错误,所以需要再次判断队列是否为空,如果还是为空,就继续wait()
阻塞。 - 在管理互斥锁的时候,使用的是
std::unique_lock
而不是std::lock_guard
,而且事实上也不能使用std::lock_guard
,这需要先解释下wait()
函数所做的事情。可以看到,在wait()
函数之前,使用互斥锁保护了,如果wait
的时候什么都没做,岂不是一直持有互斥锁?那生产者也会一直卡住,不能够将数据放入队列中了。所以,wait()
函数会先调用互斥锁的unlock()
函数,然后再将自己睡眠,在被唤醒后,又会继续持有锁,保护后面的队列操作。而lock_guard
没有lock
和unlock
接口,而unique_lock
提供了。这就是必须使用unique_lock
的原因。 - 使用细粒度锁,尽量减小锁的范围,在
notify_one()
的时候,不需要处于互斥锁的保护范围内,所以在唤醒条件变量之前可以将锁unlock()
。
还可以将cond.wait(locker);
换一种写法,wait()
的第二个参数可以传入一个函数表示检查条件,这里使用lambda
函数最为简单,如果这个函数返回的是true
,wait()
函数不会阻塞会直接返回,如果这个函数返回的是false
,wait()
函数就会阻塞着等待唤醒,如果被伪唤醒,会继续判断函数返回值。
void function_2() {
int data = 0;
while ( data != 1) {
std::unique_lock<std::mutex> locker(mu);
cond.wait(locker, [](){ return !q.empty();} ); // Unlock mu and wait to be notified
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
}
}
除了notify_one()
函数,c++
还提供了notify_all()
函数,可以同时唤醒所有处于wait
状态的条件变量。
参考
</div>
</div>
</div>