Redis基础_五大数据类型和常用命令

1. Redis基本介绍

1.1 传统数据存储出现的问题

  • 海量用户
  • 高并发

罪魁祸首——关系型数据库:

  • 性能瓶颈:磁盘IO性能低下
  • 扩展瓶颈:数据关系复杂,扩展性差,不便于大规模集群

解决思路

  • 降低磁盘IO次数,越低越好 —— 内存存储
  • 去除数据间的关系,越简单越好 —— 不存储关系,仅存储数据

1.2 NoSql简介

也就是可以使用 NoSql 解决,即Not-OnlySQL(泛指非关系型的数据库),作为关系型数据库的补充。

常见Nosql数据库:

  • Redis
  • memcache
  • HBase
  • MongoDB

特征:

  • 可扩容,可伸缩
  • 大数据量下得高性能
  • 灵活得数据模型,
  • 高可用

1.3 Redis简介

概念:
Redis(REmote DIctinary Server)是用C语言开发的一个开源的高性能键值对(key-value)数据库
特征:

  1. 数据间没有必然的关联关系
  2. 内部采用单线程机制进行工作
  3. 高性能。官方提供测试数据,50个并发执行100000个请求,读的速度是110000次/s,写的速度是81000次/s。
  4. 多数据类型支持:string(字符串类型)、list(列表类型)、hash(散列类型)、set(集合类型)、sorted_set(有序集合类型)
  5. 持久化支持。可以进行数据灾难恢复

应用场景:

  • 为热点数据加速查询(主要场景)、如热点商品、热点新闻、热点资讯、推广类等提高访问量信息等。
  • 任务队列、如秒杀、抢购、购票等
  • 即时信息查询,如各位排行榜、各类网站访问统计、公交到站信息、在线人数信息(聊天室、网站)、设备信号等
  • 时效性信息控制,如验证码控制,投票控制等
  • 分布式数据共享,如分布式集群构架中的session分离
  • 消息队列
  • 分布式锁

2. 五种常用数据类型

redis 自身可以看做是一个 Map,其中所有的数据都是采用 key : value 的形式存储

数据类型指的是存储的数据的类型,也就是 value 部分的类型,key 部分永远都是字符串

2.1 String 字符串类型

  • 存储的数据:单个数据,最简单的数据存储类型,也是最常用的数据存储类型
  • 存储数据的格式:一个存储空间保存一个数据
  • 存储内容:通常使用字符串,如果字符串以整数的形式展示,可以作为数字操作使用

String 类型数据的基本操作

  • 添加/修改数据: set key value

  • 获取数据: get key

  • 删除数据: del key

  • 添加/修改多个数据: mset key1 valueq key2 value2 …

  • 获取多个数据: mget key1 key2 …

  • 获取数据字符个数(字符串长度): strlen key

  • 追加信息到原始信息后部(如果原始信息存在就追加,否则新建): append key value

  • 存入一个不存在的key,如果已经存在,则储存失败: setnx key value

  • 原子自增/自减: INCR/DECR ,例如INCR key:1, 若key:1 存在,则自增1,不存在默认设置1

上面的mset和 mget 中的m 指的是 Multiple, 代表此操作为事务性操作,后面详细说

涉及到m的批量操作多个key的指令,在集群环境中,可能会报如下错误:

(error) CROSSSLOT Keys in request don't hash to the same slot

例如这个指令: mset key:1 1 key:2 2 key:3 3,

这是因为Redis集群中,是使用哈希槽(slot)的方式存储数据, 每个节点存储若干个槽, 当存储数据时,会根据key进行hash运算并对槽的数量进行取模, 最后结果就是存入的节点位置,

默认 Redis涉及多个key的操作会被限制在一个槽中, 如Redis Cluster中的mget/mset操作。

解决方法:

使用HashTag, 使用{},括号括住key中相同的部分, redis在计算Hash值时,只会取{}中的字符进行计算,那么如上的指令: mset key:1 1 key:2 2 key:3 3, 就会变成这样 : mset {key}:1 1 {key}:2 2 {key}:3 3, 那么这三个key都会被分配到同一个槽中,执行成功

String类型数据的扩展操作

业务场景1

大型企业级应用中,分表操作是基本操作,使用多张表存储同类型数据,但是对应的主键id必须保证统一性,不能重复。Oracle数据库具有sequence设定,可以解决该问题,但是MySQL数据库并不具有类似的机制,那么就不能使用自增的方式用作主键了,如何解决?

相关指令:

  • 设置数值数据增加指定范围的值

    incr key // 指定的key的值自增1
    incrby key increment //指定的key的值自增指定的 increment 值,可以是负数
    incrbyfloat key increment //可以加一个小数,上面两个不行
    
  • 设置数值数据减少指定范围的值

    decr key //自减1
    decrby key increment //自减指定的值
    

redis用于控制数据库表主键id,为数据库表主键提供生成策略,保障数据库表的主键唯一性

此方案适用于所有数据库,且支持数据库集群

注意事项:

  • string在redis内部存储默认就是一个字符串,当遇到增减类操作incr,decr时会转成数值型进行计算。
  • redis所有的操作都是原子性的,采用单线程处理所有业务,命令是一个一个执行的,因此无需考虑并发 带来的数据影响。
  • 注意:按数值进行操作的数据,如果原始数据不能转成数值,或超越了redis 数值上限范围,将报错。 9223372036854775807(java中long型数据最大值,Long.MAX_VALUE)

业务场景2:

  1. 启动海选投票,只能通过微信投票,每个微信号每 4 小时只能投1票。
  2. 电商商家开启热门商品推荐,热门商品不能一直处于热门期,每种商品热门期维持3天,3天后自动取消热门。
  3. 新闻网站会出现热点新闻,热点新闻最大的特征是时效性,如何自动控制热点新闻的时效性。

相关指令:

设置数据具有指定的生命周期

setex key seconds value // 设置key-value 存活指定时间单位秒
psetex key milliseconds value //单位毫秒

redis 控制数据的生命周期,通过数据是否失效控制业务行为,适用于所有具有时效性限定控制的操作

string 类型数据操作的注意事项

指令返回的值的含义:

  1. 数据操作不成功的反馈与数据正常操作之间的差异 (根据不同的指令类型有所区分,例如返回1到底是操作成功还是运行结果值)
    • 表示运行结果是否成功
      • (integer) 0 代表 false 失败
      • (integer) 1 代表 true 成功
    • 表示运行结果值
      • (integer) 3 代表 3个
      • (integer) 1 代表 1个
  2. 数据未获取到
    • (nil)等同于null

单个value数据最大值:512M

**数值计算最大范围(java中的long的最大值):9223372036854775807 **

常用的存储方式

  1. 例如: 在redis中为大V用户设定用户信息粉丝数和博文数,以用户主键和属性值作为key,后台设定定时刷新策略即可
eg: user:id:3506728370:fans → 12210947
eg: user:id:3506728370:blogs → 6164
eg: user:id:3506728370:focuss → 83
  1. 例如: 在redis中以json格式存储大V用户信息,定时刷新(也可以使用hash类型)

    eg: user:id:3506728370 →
    {"id":3506728370,"name":"春晚","fans":12210862,"blogs":6164, "focus":83}
    
  2. 关系型数据库中的热点数据key命名惯例

// 表名:主键名:主键值:字段名
order:id:3954561:name

2.2 hash 类型

现存问题:

对象类数据的存储如果具有较频繁的更新需求操作会显得笨重 (需要存多个key代表一个对象或者存一个json),比较臃肿

hash 类型 介绍

  • 新的存储需求:对一系列存储的数据进行编组,方便管理,典型应用存储对象信息
  • 需要的存储结构:一个存储空间保存多个键值对数据
  • hash类型:底层使用哈希表结构实现数据存储

示意图:

1610207929952

hash存储结构优化

  • 如果field数量较少,存储结构优化为类数组结构
  • 如果field数量较多,存储结构使用HashMap结构

hash 类型数据的基本操作

  • 添加/修改数据

    hset key field value // 在指定的key中设置一个hash结构的值 键为field 值为 value
    
  • 获取数据

    hget key field //获取指定field
    hgetall key //获取全部
    
  • 删除数据

    hdel key field1 [field2]
    
  • 添加/修改多个数据

    hmset key field1 value1 field2 value2 …
    
  • 获取多个数据

    hmget key field1 field2 …
    
  • 获取哈希表中字段的数量

    hlen key
    
  • 获取哈希表中是否存在指定的字段

    hexists key field		   	
    

hash 类型数据扩展操作

  • 获取哈希表中所有的字段名和字段值

    hkeys key //获取本hash中所有的key
    hvals key //获取所有的value
    
  • 设置指定字段的数值数据增加指定范围的值

    hincrby key field increment // 指定某个hash中的某个字段对应的值增加 指定的值
    hincrbyfloat key field increment  //增加的值可以是小数
    

hash 类型数据操作的注意事项

  1. hash类型下的value只能存储字符串,不允许存储其他数据类型,不存在嵌套现象。如果数据未获取到, 对应的值为(nil)
  2. 每个 hash 可以存储 2^32 - 1 个键值对
  3. hash类型十分贴近对象的数据存储形式,并且可以灵活添加删除对象属性。但hash设计初衷不是为了存 储大量对象而设计的,切记不可滥用,更不可以将hash作为对象列表使用
  4. hgetall 操作可以获取全部属性,如果内部field过多,遍历整体数据效率就很会低,有可能成为数据访问瓶颈
  5. 过期功能不能使用在field上,只能用在key上
  6. Redis集群架构下不适合大规模使用,一个hash结构的值可能会很大,可能会导致大量的数据存储在其中一个节点上

hash 类型应用场景

场景一:

电商网站购物车设计与实现

业务分析:

1610210103819

根据上图:

  • 以客户id作为key,每位客户创建一个hash存储结构存储对应的购物车信息
  • 将商品编号作为field,购买数量作为value进行存储
  • 添加商品:追加全新的field与value
  • 浏览:遍历hash
  • 更改数量:自增/自减,设置value值
  • 删除商品:删除field
  • 清空:删除key

所以在不考虑购物车与数据库间持久化同步、购物车与订单间关系、未登录用户购物车信息存储等 其他情况时, redis中的hash结构就可以满足我们的需求

思考:

当前设计是否加速了购物车的呈现 ?

当前仅仅是将数据存储到了redis中,并没有起到加速的作用,商品信息还需要二次查询数据库 ,因为只是存了数量,商品的信息还是没有储存

优化方式1:

每条购物车中的商品记录保存成两条field

  • field1专用于保存购买数量

命名格式:商品id:nums

保存数据:数值

  • field2专用于保存购物车中显示的信息,包含文字描述,图片地址,所属商家信息等

命名格式:商品id:info

保存数据:json

但是这种方式,每个商品的信息, 在不同的用户购物车中,都需要保存,数据极度冗余,所以可以将商品的信息单独保存在一个hash中

优化方式2:

商品信息单独存放, 需要的时候直接拿取,

但是此时有个问题,若每个用户添加商品进入购物车时,对应的都要将商品信息添加一遍,若商品hash中已经存在此商品信息,操作将多余

可以使用如下命令:

hsetnx key field value // 存值时判断是否已经存在此field,若存在则不set

场景二:

双11活动日,销售手机充值卡的商家对移动、联通、电信的30元、50元、100元商品推出抢购活动,每种商 品抢购上限1000张

解决方案

  • 以商家id作为key
  • 将参与抢购的商品id作为field
  • 将参与抢购的商品数量作为对应的value
  • 抢购时使用降值的方式控制产品数量

redis 应用于抢购,限购类、限量发放优惠卷、激活码等业务的数据存储设计

2.3 list类型

基本介绍

数据存储需求:存储多个数据,并对数据进入存储空间的顺序进行区分

需要的存储结构:一个存储空间保存多个数据,且通过数据可以体现进入顺序

list类型:保存多个数据,底层使用双向链表存储结构实现

示意图:

1610266718687

list 类型数据基本操作

  • 添加/修改数据

    // 创建和添加是同一个 命令
    lpush key value1 [value2] ……  //向链表的左边添加一个元素,可以是多个
    rpush key value1 [value2] …… // 从右边添加
    
  • 获取数据

    lrange key start stop // 从左边依次取出元素, start stop 是开始结束索引,并且两边包含
    lindex key index // 从左边取出指定索引的元素
    llen key  //list长度
    
  • 获取并移除数据

lpop key //从list左边拿出一个元素
rpop key //从右边拿
  • 规定时间内获取并移除数据 (b代表block 阻塞的意思)

    blpop key1 [key2] timeout // 从指定的若干个list中获取左边的值,若没有获取到,则等待指定的时间,(秒),一旦获取到一个 就返回结束
    brpop key1 [key2] timeout //从右边
    brpoplpush source destination timeout //从指定的source list中右边拿出一个数据 放到destination list中右边, 获取不到则阻塞等待
    
  • Stack(栈)

    LPUSH + LPOP // 左边存,左边取,先进后出
    
  • Queue(队列)

    LPUSH + RPOP  // 左边存,右边取,先进先出
    
  • Blocking MQ(阻塞队列)

    LPUSH + BRPOP // BRPOP 等待获取
    

业务场景

场景1: 微信朋友圈点赞,要求按照点赞顺序显示点赞好友信息 如果取消点赞,移除对应好友信息

此时若点赞人是在中间,这是如果需要删除记录,则需要删除中间的元素,如何操作

移除指定数据

lrem key count value //从左边删除 指定的元素值 value, 并且指定删除的个数 count, 因为list中的元素是可以重复的

redis 应用于具有操作先后顺序的数据控制

其他场景:

  1. twitter、新浪微博、腾讯微博中个人用户的关注列表需要按照用户的关注顺序进行展示,粉丝列表需要将最 近关注的粉丝列在前面
  2. 新闻、资讯类网站如何将最新的新闻或资讯按照发生的时间顺序展示?
  3. 企业运营过程中,系统将产生出大量的运营数据,保障多台服务器操作日志的统一顺序输出?

解决方式:

  • 依赖list的数据具有顺序的特征对信息进行管理

  • 使用队列模型解决多路信息汇总合并的问题

  • 使用栈模型解决最新消息的问题

list 类型数据操作注意事项

  1. list中保存的数据都是string类型的,数据总容量是有限的,最多2^32 - 1 个元素 (4294967295)。
  2. list具有索引的概念,但是操作数据时通常以队列的形式进行入队出队操作,或以栈的形式进行入栈出栈操作
  3. 获取全部数据操作结束索引设置为-1
  4. list可以对数据进行分页操作,

2.4 set 类型

基本介绍

新的存储需求:存储大量的数据,在查询方面提供更高的效率

需要的存储结构:能够保存大量的数据,高效的内部存储机制,便于查询

set类型:底层与hash存储结构完全相同,仅存储键,不存储值(nil),并且值是不允许重复的

示意图:

1610269286322

基本操作

  • 添加数据

    sadd key member1 [member2] 
    
  • 获取全部数据

    smembers key 
    
  • 删除数据

    srem key member1 [member2]
    
  • 获取集合数据总量

    scard key
    
  • 判断集合中是否包含指定数据

    sismember key member
    

扩展操作

每位用户首次使用今日头条时会设置3项爱好的内容,但是后期为了增加用户的活跃度、兴趣点,必须让用户 对其他信息类别逐渐产生兴趣,增加客户留存度,如何实现?

解决方式:

  • 系统分析出各个分类的最新或最热点信息条目并组织成set集合
  • 随机挑选其中部分信息
  • 配合用户关注信息分类中的热点信息组织成展示的全信息集合

相关命令:

  • 随机获取集合中指定数量的数据

    srandmember key [count] // 随机获取set中指定的元素个数
    
  • 随机获取集合中的某个数据并将该数据移出集合

    spop key [count] //随机拿取
    

redis 应用于随机推荐类信息检索,例如热点歌单推荐,热点新闻推荐,热卖旅游线路,应用APP推荐, 大V推荐等

其他业务场景:

  1. 脉脉为了促进用户间的交流,保障业务成单率的提升,需要让每位用户拥有大量的好友,事实上职场新人不 具有更多的职场好友,如何快速为用户积累更多的好友?
  2. 新浪微博为了增加用户热度,提高用户留存性,需要微博用户在关注更多的人,以此获得更多的信息或热门 话题,如何提高用户关注他人的总量?
  3. QQ新用户入网年龄越来越低,这些用户的朋友圈交际圈非常小,往往集中在一所学校甚至一个班级中,如何 帮助用户快速积累好友用户带来更多的活跃度?
  4. ...

相关命令:

  • 求两个集合的交、并、差集

    sinter key1 [key2] //两个set 集合中相同的一部分
    sunion key1 [key2] // 加在一起的部分
    sdiff key1 [key2] // key1 去除 key2 中剩下的部分,所以调过来结果可能不相同
    
  • 求两个集合的交、并、差集并存储到指定集合中 (destination集合)

    sinterstore destination key1 [key2]
    sunionstore destination key1 [key2]
    sdiffstore destination key1 [key2] 
    
  • 将指定数据从原始集合中移动到目标集合中 ,

    smove source destination member 
    

redis 应用于同类信息的关联搜索,二度关联搜索,深度关联搜索

显示共同关注(一度)  显示共同好友(一度)

由用户A出发,获取到好友用户B的好友信息列表(一度)

由用户A出发,获取到好友用户B的购物清单列表(二度)

由用户A出发,获取到好友用户B的游戏充值列表(二度)

set 类型数据操作的注意事项

set 类型不允许数据重复,如果添加的数据在 set 中已经存在,将只保留一份

set 虽然与hash的存储结构相同,但是无法启用hash中存储值的空间

set 类型应用场景

场景一:

集团公司共具有12000名员工,内部OA系统中具有700多个角色,3000多个业务操作,23000多种数据,每 位员工具有一个或多个角色,如何快速进行业务操作的权限校验?

1610275953011

解决方案:

  • 依赖set集合数据不重复的特征,依赖set集合hash存储结构特征完成数据过滤与快速查询
  • 根据用户id获取用户所有角色
  • 根据用户所有角色获取用户所有操作权限放入set集合
  • 根据用户所有角色获取用户所有数据全选放入set集合

redis应用于同类型不重复数据的合并操作

场景二:

公司对旗下新的网站做推广,统计网站的PV(访问量),UV(独立访客),IP(独立IP)。

PV:网站被访问次数,可通过刷新页面提高访问量

UV:网站被不同用户访问的次数,可通过cookie统计访问量,相同用户切换IP地址,UV不变

IP:网站被不同IP地址访问的总次数,可通过IP地址统计访问量,相同IP不同用户访问,IP不变

解决方案:

  • 利用set集合的数据去重特征,记录各种访问数据
  • 建立string类型数据,利用incr统计日访问量(PV)
  • 建立set模型,记录不同cookie数量(UV)
  • 建立set模型,记录不同IP数量(IP)

redis 应用于同类型数据的快速去重

场景三:

redis 应用于基于黑名单与白名单设定的服务控制

解决方案:

基于经营战略设定问题用户发现、鉴别规则

  • 周期性更新满足规则的用户黑名单,加入set集合
  • 用户行为信息达到后与黑名单进行比对,确认行为去向
  • 黑名单过滤IP地址:应用于开放游客访问权限的信息源
  • 黑名单过滤设备信息:应用于限定访问设备的信息源
  • 黑名单过滤用户:应用于基于访问权限的信息源

2.5 sorted_set 类型

基本介绍

新的存储需求:数据排序有利于数据的有效展示,需要提供一种可以根据自身特征进行排序的方式

需要的存储结构:新的存储模型,可以保存可排序的数据

sorted_set类型:在set的存储结构基础上添加可排序字段

示意图:

1610276571379

sorted_set 类型数据的基本操作

  • 添加数据

    zadd key score1 member1 [score2 member2] //score1 顺序值, member1 value值 ,可以多次储存
    
  • 获取全部数据

    zrange key start stop [WITHSCORES] // 获取从start 索引start开始到 stop 结束后的元素,若带上withscores 则顺序号和元素一起输出
    zrevrange key start stop [WITHSCORES] //输出结果 倒转
    
  • 删除数据

    zrem key member [member ...] //删除指定的值
    
  • 按条件获取数据

    zrangebyscore key min max [WITHSCORES] [LIMIT] // 获取指定顺序号 min开始到 max 结束的值, limit 0 3 意为分页操作, 从结果的0索引开始 查询3个
    zrevrangebyscore key max min [WITHSCORES] //结果反转
    
  • 条件删除数据

    zremrangebyrank key start stop // 删除元素,指定索引开始结束
    zremrangebyscore key min max // 删除元素,指定score 排序值的开始结束
    

    注意:

    min与max用于限定搜索查询的条件

    start与stop用于限定查询范围,作用于索引,表示开始和结束索引

    offset与count用于限定查询范围,作用于查询结果,表示开始位置和数据总量

  • 获取集合数据总量

    zcard key  // 总个数
    zcount key min max //指定范围内的个数
    
  • 集合交、并操作

    zinterstore destination numkeys key [key ...] //将指定个数numkeys的sorted_set ,中共同拥有的部分元素移动到destination sorted_set中, 指定几个,后面的key 就要写几个, 合并后, 排序字段默认是相加合并,也可以指定规则为取最大最小值
    zunionstore destination numkeys key [key ...] //将相交操作改外合并
    
  • 获取数据对应的索引(排名)

    zrank key member // 获取 sorted_set中 值为member 的索引(排名)
    zrevrank key member // 获取倒着数的索引
    
  • score值获取与修改

    zscore key member  //获取 sorted_set 中值为member 的score值
    zincrby key increment member //将 sorted_set中 值为member的score值加上指定的值increment
    

sorted_set 类型数据操作的注意事项

  1. score保存的数据存储空间是64位,如果是整数范围是-9007199254740992~9007199254740992
  2. score保存的数据也可以是一个双精度的double值,基于双精度浮点数的特征,可能会丢失精度,使用时 候要慎重
  3. sorted_set 底层存储还是基于set结构的,因此数据不能重复,如果重复添加相同的数据,score值将被反复覆盖,保留最后一次修改的结果

sorted_set 类型应用场景

当任务或者消息待处理,形成了任务队列或消息队列时,对于高优先级的任务要保障对其优先处理,如 何实现任务权重管理。

  • 对于带有权重的任务,优先处理权重高的任务,采用score记录权重即可
  • redis 应用于即时任务/消息队列执行管理

3. redis通用指令

3.1 Key 相关通用操作

key是一个字符串,通过key获取redis中保存的数据 ,对于key本身,也有一些命令

  • 删除指定key

    del key
    
  • 获取key是否存在

    exists key
    
  • 获取key的类型

    type key
    

key 扩展操作(时效性控制)

  • 为指定key设置有效期

    expire key seconds // 单位秒
    pexpire key milliseconds //单位毫秒
    expireat key timestamp //设置到某个时间戳(秒)
    pexpireat key milliseconds-timestamp //毫秒
    
  • 获取key的有效时间

    ttl key // 查看当前key 有效期还剩多久,如果key不存在返回-2,若指定的key没有设置有效期则是-1
    pttl key // 毫秒
    
  • 切换key从时效性转换为永久性

    persist key //将一个有期限的key转为永久, 不存在的key 则是返回0
    

key 扩展操作(查询key)

  • 查询key

    /**
    对于pattern 有如下匹配规则
    keys * 查询所有
    keys it* 查询所有以it开头
    keys *heima 查询所有以heima结尾
    keys ??heima 查询所有前面两个字符任意,后面以heima结尾
    keys user:? 查询所有以user:开头,最后一个字符任意
    keys u[st]er:1 查询所有以u开头,以er:1结尾,中间包含一个字母,s或t
    */
    keys pattern
    
  • scan:渐进式遍历键

    SCAN cursor [MATCH pattern][COUNT count]

    scan参数提供了三个参数,第一个是cursor整数值(hash桶的索引值),第二个是key的正则模式,第三个是一次遍历的key的数量(参考值,底层遍历的数量不一定),并不是符合条件的结果数量。

    第一次遍历时,cursor值为0,然后将返回结果中第一个整数值作为下一次遍历的cursor。一直遍历到返回的cursor值为0时结束。

    注意:但是scan并非完美无瑕,如果在scan的过程中如果有键的变化(增加、删除、修改),那么遍历效果可能会碰到如下问题:新增的键可能没有遍历到,遍历出了重复的键等情况,也就是说scan并不能保证完整的遍历出来所有的键,这些是我们在开发时需要考虑的。

key 其他操作

  • 为key改名

    rename key newkey
    renamenx key newkey
    
  • 对指定的value进行排序排序

    sort key // 对 list,set,sorted_set 进行排序
    
  • 其他key通用操作

    help @generic
    

3.2 数据库通用操作

由于key是由程序员定义的 .

redis在使用过程中,伴随着操作数据量的增加,会出现大量的数据以及对应的key

数据不区分种类、类别混杂在一起,极易出现重复或冲突

所以,redis为每个服务提供有16个数据库,编号从0到15 ,每个数据库之间的数据相互独立

db 基本操作

  • 切换数据库

    select index //默认为0
    
  • 数据移动

    move key db //移动本库中的数据到指定的库中, 而且必须保证目的地库没有此key
    
  • 数据清除

    dbsize // 当前库有多少key
    flushdb //清除当前库数据
    flushall //清除所有库数据(常用高级命令,一般到一个新公司第一件事执行这个命令,会受到所有人的关注)
    
  • 其他操作

    quit //退出
    ping //测试服务器是否连通
    echo message //输出日志
    
posted @ 2021-01-12 23:29  哈哈丶丶  阅读(155)  评论(0编辑  收藏  举报