加载中...

整数分解

https://www.acwing.com/problem/content/description/1595/

dp解法

#include <iostream>
#include <cstring>

using namespace std;

const int N = 410;

int n, k, p;
int f[21][N][N];

int power(int a, int b)
{
    int res = 1;
    for (int i = 0; i < b; i ++ ) res *= a;
    return res;
}

int main()
{
    cin >> n >> k >> p;

    memset(f, -0x3f, sizeof f);
    f[0][0][0] = 0;
    int m;
    for (m = 1; ; m ++ )
    {
        int v = power(m, p);
        if (v > n) break;

        for (int i = 0; i <= n; i ++ )
            for (int j = 0; j <= k; j ++ )
            {
                f[m][i][j] = f[m - 1][i][j];

                if (i >= v && j) f[m][i][j] = max(f[m][i][j], f[m][i - v][j - 1] + m);
            }
    }

    m -- ;
    if (f[m][n][k]<0) puts("Impossible");
    else
    {
        printf("%d = ", n);
        bool is_first = true;
        while (m)
        {
            int v = power(m, p);
            while (n >= v && k && f[m][n - v][k - 1] + m >= f[m-1][n][k])
            {
                if (is_first) is_first = false;
                else printf(" + ");

                printf("%d^%d", m, p);
                n -= v, k --;
            }

            m -- ;
        }
    }

    return 0;
}

dfs写法

#include <iostream>
#include <vector>
#include <cmath>
using  namespace std;

int n, k, p;
int v[21];

int resSum = -1;
vector<int> path, ans;

/* i:当前递归到的因子数,n:选取的因子数i^p的和(初始化为n,每一步减去v[i]),
   cnt:选取的因子数的个数,sum:选取的因子数之和 */
void DFS(int i, int n, int cnt, int sum) {
    if (n == 0 && cnt == k) {
        if (sum > resSum) {
            resSum = sum;
            ans = path;
        }
        return;
    }
    while (i > 0) {
        //减枝,防止递归爆栈
        if (n - v[i] >= 0 && cnt + 1 <= k) {
            path[cnt] = i;
            DFS(i, n - v[i], cnt + 1, sum + i);
        }
        i--;
    }
}

int main() {
    cin >> n >> k >> p;
    path.resize(k);
    int i = 0;
    while (pow(++i, p) <= n){
        //用数组存入i^p的值
        v[i] = pow(i, p);
    }
    i--;
    DFS(i, n, 0, 0);
    if (resSum == -1) puts("Impossible");
    else {
        printf("%d = %d^%d", n, ans[0], p);
        for (int i = 1; i < ans.size(); i++) {
            printf(" + %d^%d", ans[i], p);
        }
        cout << endl;
    }
    return 0;
}

posted @ 2022-08-22 14:10  英雄不问出处c  阅读(59)  评论(0编辑  收藏  举报