最低公共祖先
https://www.acwing.com/problem/content/description/1638/
思路:
LCA(爬山法)+重建一个树(知道其两个排序),由于时间n可能比较大,而且这题时间限制比较紧张,所以最后离散化,尽量查询不用哈希,因为哈希的常数太大了。
#include <iostream>
#include <cstring>
#include <unordered_map>
#include <algorithm>
using namespace std;
const int N = 10010;
int m, n;
int in[N], pre[N], seq[N];
unordered_map<int, int> pos;
int p[N], depth[N];
int build(int il, int ir, int pl, int pr, int d)
{
int root = pre[pl];
int k = root;
depth[root] = d;
if (il < k) p[build(il, k - 1, pl + 1, pl + 1 + (k - 1 - il), d + 1)] = root;
if (k < ir) p[build(k + 1, ir, pl + 1 + (k - 1 - il) + 1, pr, d + 1)] = root;
return root;
}
int main()
{
cin >> m >> n;
for (int i = 0; i < n; i ++ )
{
cin >> pre[i];
seq[i] = pre[i];
}
sort(seq, seq + n);
for (int i = 0; i < n; i ++ )
{
pos[seq[i]] = i;
in[i] = i;
}
for (int i = 0; i < n; i ++ ) pre[i] = pos[pre[i]];
build(0, n - 1, 0, n - 1, 0);
while (m -- )
{
int a, b;
cin >> a >> b;
if (pos.count(a) && pos.count(b))
{
a = pos[a], b = pos[b];
int x = a, y = b;
while (a != b)
if (depth[a] < depth[b]) b = p[b];
else a = p[a];
if (a != x && a != y) printf("LCA of %d and %d is %d.\n", seq[x], seq[y], seq[a]);
else if (a == x) printf("%d is an ancestor of %d.\n", seq[x], seq[y]);
else printf("%d is an ancestor of %d.\n", seq[y], seq[x]);
}
else if (pos.count(a) == 0 && pos.count(b) == 0)
printf("ERROR: %d and %d are not found.\n", a, b);
else if (pos.count(a) == 0)
printf("ERROR: %d is not found.\n", a);
else
printf("ERROR: %d is not found.\n", b);
}
return 0;
}