虚拟化之-virtio学习
virtio学习
基于kernel 6.8-rc5和virtio规范1.1、1.2。
1. virtio queue
- 通用初始化流程:
1.1 split queue
1.1.1 结构
从Desc角度看,可以把Desc理解成一个链表,添加到avail和回收就是裁剪一段子链表和把子链表接回去的过程。
struct vring_desc {
__virtio64 addr;
__virtio32 len;
__virtio16 flags;
__virtio16 next;
};
struct vring_avail {
__virtio16 flags;
__virtio16 idx;
__virtio16 ring[];
};
struct vring_used {
__virtio16 flags;
__virtio16 idx;
vring_used_elem_t ring[];
};
/* u32 is used here for ids for padding reasons. */
struct vring_used_elem {
/* Index of start of used descriptor chain. */
__virtio32 id;
/* Total length of the descriptor chain which was used (written to) */
__virtio32 len;
};
typedef struct vring_used_elem __attribute__((aligned(VRING_USED_ALIGN_SIZE)))
vring_used_elem_t;
1.2 packed queue
1.2.1 结构
相比较于split模式,packed模式所占用的硬件空间显然更小,只要一条descring的空间和8个byte的空间。
driver_event
和device_event
是用来做中断合并的。驱动通过设置driver_event
,与设备协商什么时候需要发出通知;设备通过配置device_event
,通知驱动什么时候需要发出avail event。具体的含义见spec1.2:
/* Enable events */
#define RING_EVENT_FLAGS_ENABLE 0x0
/* Disable events */
#define RING_EVENT_FLAGS_DISABLE 0x1
/*
* Enable events for a specific descriptor
* (as specified by Descriptor Ring Change Event Offset/Wrap Counter).
* Only valid if VIRTIO_F_EVENT_IDX has been negotiated.
*/
#define RING_EVENT_FLAGS_DESC 0x2
/* The value 0x3 is reserved */
在驱动程序中,除了要映射上面提到的packed queue的基本结构(与硬件中一一对应),还有驱动自己申请的一些空间,用来记录virtqueue工作过程中的一些状态,这些结构容易和基本结构造成混淆,因此下面先拿出来介绍。分别是
-
state array(用来记录添加到ring中的desc的状态字段,间接表的位置和last desc id)
struct vring_desc_state_packed *state; state = kmalloc_array(queue_size, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
-
extra array(用来记录map的缓冲区(正常情况下不用)和ID)
struct vring_desc_extra *extra; int i; extra = kmalloc_array(queue_size, sizeof(struct vring_desc_extra),GFP_KERNEL); memset(extra, 0, queue_size * sizeof(struct vring_desc_extra)); for (i = 0; i < queue_size - 1; i++) extra[i].next = i + 1;
1.2.2 数据流程
1.2.2.1 驱动生产job
-
使用indiret desc(优先)
static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq, struct scatterlist *sgs[], unsigned int total_sg, unsigned int out_sgs, unsigned int in_sgs, void *data, gfp_t gfp);
第一步:申请一条
indir desc ring
。第二步:使用
scattergatterlist
表中的每一项,填充indir desc ring
,id字段不用填。第三步:修改
desc ring
中的next_avail_idx
这个slot,使之指向indir desc ring
,ID
字段填充为free_head
,FLAG
字段加上VRING_DESC_F_INDIRECT
。第四步:驱动更新自己维护的字段,包括
avail_wrap_counter
、avail_used_flags
、next_avail_idx
、free_head
,最后记录这个desc到state array
。以下图为例,假设queue_size为6,在初始化后,我们在0x8000000处申请了一个长度为5的二级表,并添加到virtqueue里面。
-
使用chained desc
chained desc的流程跟indirect类似,只是
state array
记录的有较大区别。这里ID全部设为为Head的ID的意义有点不明确,从extra array的角度理解,实际的ID和next ID都存放在这个数组里面,这里改了难道只是为了辅助设备判断这是一个chain的吗?也可能是为了乱序使用而预留的?
1.2.2.2 设备消费job
以chained desc为例,介绍设备消费Job。设备内部需要维护一个used_idx
变量,以便记录上次消费到什么位置。此外,设备内还有一个used_wrap_counter
位。这两个字段组合成一个16bit的值。
设备从used_idx开始poll,发现flags变成了W|A,然后往下遍历,发现一直到第5个slot都是W|A,然后开始处理,并且最后覆写第一个slot的FLAG字段,len字段,此时ring的结构如下图所示。
然后设备通过中断或者其他通知机制,通知驱动处理。
1.2.2.3 驱动回收job
驱动收到通知后,开始回收job。
第一步:读取设备的used_idx
。发现前15个bit为0,最后一个bit为1。此时驱动就知道设备这次使用的desc的slot为0,且没经过翻转边界。接着就去读取desc[0]的各个字段,发现ID是0。然后去查询state array[ID]
,先把data字段取出来,作为任务的完成状态字段。
第二步:调用detach_buf_packed(vq, id, ctx);
处理缓冲区。首先读取state array[ID]
,发现这次任务涵盖5个desc,最后一个desc的ID为4。则先做一个类似链表接回去的操作,把extra array
的信息先更新了,最后把free_head
又设置为ID=0的位置。
第三步:驱动判断消费的数量是否发生越界,从而是否需要更新used_wrap_counter
和used_idx
,最后写回到设备,让设备直到下次从哪里开始poll。此时ring的结构如下所示。
1.2.2.4 发生越界的情况
我们在上一节的情况下继续讨论。加入现在又要添加一条长度为2的chain。那么ring的结构如下所示。此时由于发生了越界,因此驱动更新driver_wrap_counter
,并且从头开始重复利用desc。因此slot为0位置的A标志被置为0,U标志被置为1。
设备从used_idx=5的位置开始poll,发现这个slot上是可用的(因为此时设备内部的device_wrap_counter=0
,因此识别A=1),然后翻转device_wrap_counter=0
,此时又发现slot=0的位置,A=0又符合,因此发现这个也是可用的,接下来发现slot=1的位置不符合,因此就处理两个desc(最后只更新slot为5的那个)。处理完了之后ring的结构如下所示:
驱动回收job的过程类似,只是多了越界时的处理,然后把used_idx设置到1,使得设备下次从1开始poll,驱动包括翻转used_wrap_counter
,这样device设置U标志的时候就设置为0,设备写入的标志位就变W|!A|!U。
2. virtio device
2.1 cypto device
-
对硬件的要求:最后一条virtqueue为control queue
-
Feature bits:
config空间中的device features的bit0~4 0:VIRTIO_CRYPTO_F_REVISION_1 /*版本是否1.0以上*/ 1:VIRTIO_CRYPTO_F_CIPHER_STATELESS_MODE /*无状态模式,仅在1.0以上支持*/ 2:VIRTIO_CRYPTO_F_HASH_STATELESS_MODE 3:VIRTIO_CRYPTO_F_MAC_STATELESS_MODE 4:VIRTIO_CRYPTO_F_AEAD_STATELESS_MODE
-
设备配置字段
virtio-crypto设备的配置字段如下所示,驱动通过读取配置字段,了解设备信息,从而决定向上提供哪些算法接口。具体配置字段里面每个BIT代表什么参见virtio spec1.2。
struct virtio_crypto_config {
le32 status; //设备状态,目前只有1个bit有效,指示驱动设备已经准备好
le32 max_dataqueues; //dataqueue的最大数量
le32 crypto_services; //指示设备提供哪些加密服务,6.8代码中有5种
/* Detailed algorithms mask */
le32 cipher_algo_l; //指示设备支持哪些cipher加密算法
le32 cipher_algo_h;
le32 hash_algo; //指示设备支持哪些HASH算法
le32 mac_algo_l; //指示设备支持哪些MAC算法
le32 mac_algo_h;
le32 aead_algo; //指示设备支持哪些AEAD算法
/* Maximum length of cipher key in bytes */
le32 max_cipher_key_len;
/* Maximum length of authenticated key in bytes */
le32 max_auth_key_len;
le32 akcipher_algo; //指示设备支持哪些akcipher算法
/* Maximum size of each crypto request's content in bytes */
le64 max_size;
};
2.1.1设备操作
virtio-crypto设备需要提供两种交互模式:session和stateless模式,具体需要看virtqueue的feature字段协商结果。通常情况下应该使用session模式,stateless模式要VIRTIO_CRYPTO_F_REVISION_1=1才支持。
2.1.2 control virtqueue
规范要求,crypto设备的最后一条Ring为control ring,用来交互CMD指令。
驱动通过填充struct virtio_crypto_ctrl_request
中的各个字段,向设备发起一个控制请求,为具体的加密算法协商一些基础参数。其中协商的具体参数在struct virtio_crypto_op_ctrl_req
的第二个字段中,这个字段的长度为56个Byte,具体参数跟选择的算法有关,而算法类型在header中已经指明。
具体算法的req参数如下:
-
virtio_crypto_sym_create_session_req
对称算法分为两种模式,一种是单独对称,一种是衔接一个HASH算法。
单独对称加密算法的参数:
struct virtio_crypto_cipher_session_para{ __le32 algo;/*目前支持14种,具体见代码里宏定义*/ __le32 keylen; __le32 op; /*1代表加密,2代表解密*/ __le32 padding; }
衔接一个HASH算法的参数:
struct virtio_crypto_alg_chain_session_para{ __le32 alg_chain_order;/*1代表先HASH再加密,2代表先加密再HASH*/ __le32 hash_mode;/*1:Plain hash 2:Authenticated hash (mac) 3:Nested hash*/ struct virtio_crypto_cipher_session_para cipher_param; union { struct virtio_crypto_hash_session_para{ __le32 algo;/*目前支持12种*/ __le32 hash_result_len; __u8 padding[8]; }hash_param; struct virtio_crypto_mac_session_para{ __le32 algo;/*目前支持16种*/ __le32 hash_result_len; __le32 auth_key_len; __le32 padding; }mac_param; __u8 padding[16]; } u; __le32 aad_len;/*附加的认证数据的长度(additional authenticated data,AAD)*/ __le32 padding; }
-
virtio_crypto_hash_create_session_req
见上hash_param。
-
virtio_crypto_mac_create_session_req
见上mac_param。
-
virtio_crypto_aead_create_session_req
struct virtio_crypto_aead_session_para { __le32 algo;/*0:NO 1:GCM 2:CCM 3:CHACHA20_POLY1305*/ __le32 key_len; __le32 hash_result_len; __le32 add_len; __le32 op;/*1:加密 2:解密*/ __le32 padding; }
-
virtio_crypto_akcipher_create_session_req
struct virtio_crypto_akcipher_session_para{ __le32 algo;/*0:No 1:RSA 2:DSA 3:ECDSA*/ __le32 keytype;/*1:public 2:private*/ union{ struct virtio_crypto_rsa_session_para{ __le32 padding_algo;/*0:RAW PADDING 1:PKCS1 PADDING*/ __le32 hash_algo;/*10种,具体看代码*/ }rsa; struct virtio_crypto_ecdsa_session_para{ __le32 curve_id;/*6种,具体看代码*/ __le32 padding; }ecdsa; }u; }
2.1.3 data virtqueue
相比于contro virtqueue,data virtqueue要简单很多。下面介绍具体算法的data req参数。
-
virtio_crypto_sym_data_req
这部分同样分为两个类型,分别是单独的对称加密和与hash结合的。
struct virtio_crypto_sym_data_req { union { struct virtio_crypto_cipher_data_req{ __le32 iv_len; __le32 src_data_len; __le32 dst_data_len; __le32 padding; }; struct virtio_crypto_alg_chain_data_req{ __le32 iv_len; __le32 src_data_len; __le32 dst_data_len; /* Starting point for cipher processing in source data */ __le32 cipher_start_src_offset; /* Length of the source data that the cipher will be computed on */ __le32 len_to_cipher; /* Starting point for hash processing in source data */ __le32 hash_start_src_offset; /* Length of the source data that the hash will be computed on */ __le32 len_to_hash; /* Length of the additional auth data */ __le32 aad_len; /* Length of the hash result */ __le32 hash_result_len; __le32 reserved; }; __u8 padding[40]; } u; /* See above VIRTIO_CRYPTO_SYM_OP_* */ __le32 op_type; __le32 padding; };
-
virtio_crypto_hash_data_req
struct virtio_crypto_hash_para { /* length of source data */ __le32 src_data_len; /* hash result length */ __le32 hash_result_len; };
-
virtio_crypto_mac_data_req
同上
-
virtio_crypto_aead_data_req
struct virtio_crypto_aead_para { /* * Byte Length of valid IV data pointed to by the below iv_addr * parameter. * * For GCM mode, this is either 12 (for 96-bit IVs) or 16, in which * case iv_addr points to J0. * For CCM mode, this is the length of the nonce, which can be in the * range 7 to 13 inclusive. */ __le32 iv_len; /* length of additional auth data */ __le32 aad_len; /* length of source data */ __le32 src_data_len; /* length of dst data */ __le32 dst_data_len; };
-
virtio_crypto_akcipher_para
struct virtio_crypto_akcipher_para { __le32 src_data_len; __le32 dst_data_len; };
2.1.4 virtio_crypto驱动
对于硬件来说,主要就是Sec引擎要能先识别CMD指令(control ring的请求),然后解析并设置加密参数。
对于data queue来说没什么特殊的,就是Src地址和Dst地址而已。
接下来复杂的是驱动如何跟内核的crpytp子系统进行交互,本节将举例说明。
-
probe流程
virtcrypto_probe 1.virtio_cread_le读取设备配置空间各个字段 2.软件设置配置字段到软件句柄 3.virtcrypto_init_vqs -->virtcrypto_alloc_queues -->virtcrypto_find_vqs -->virtio_find_vqs /* 调用virtio的标准钩子函数,初始化virtqueue */ -->crypto_engine_alloc_init_and_set /*为每条data queue初始化crypto引擎,从而可以通过crpyto框架管理queue*/ -->tasklet_init/*注册任务完成的回调*/ -->virtcrypto_set_affinity/*设置cpu亲和性*/ 4.virtcrypto_start_crypto_engines 5.virtio_device_ready 6.virtcrypto_update_status -->virtcrypto_dev_start -->virtio_crypto_skcipher_algs_register -->crypto_engine_register_skcipher /*遍历算法,依次注册到crypto子系统*/ -->virtio_crypto_akcipher_algs_register 7.注册配置更改的回调vcrypto_config_changed_work
-
提供的算法接口示例
static struct virtio_crypto_algo virtio_crypto_algs[] = { { .algonum = VIRTIO_CRYPTO_CIPHER_AES_CBC, .service = VIRTIO_CRYPTO_SERVICE_CIPHER, .algo.base = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "virtio_crypto_aes_cbc", .base.cra_priority = 150, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct virtio_crypto_skcipher_ctx), .base.cra_module = THIS_MODULE, .init = virtio_crypto_skcipher_init, .exit = virtio_crypto_skcipher_exit, .setkey = virtio_crypto_skcipher_setkey, .decrypt = virtio_crypto_skcipher_decrypt, .encrypt = virtio_crypto_skcipher_encrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .algo.op = { .do_one_request = virtio_crypto_skcipher_crypt_req, }, } };
下面逐步分析三个实际操作的API
static int virtio_crypto_skcipher_setkey(struct crypto_skcipher *tfm, const uint8_t *key, unsigned int keylen) { .... ret = virtio_crypto_alg_skcipher_init_sessions(ctx, key, keylen); .... } static int virtio_crypto_alg_skcipher_init_sessions( struct virtio_crypto_skcipher_ctx *ctx, const uint8_t *key, unsigned int keylen) { .... /* Create encryption session */ ret = virtio_crypto_alg_skcipher_init_session(ctx, alg, key, keylen, 1); /* Create decryption session */ ret = virtio_crypto_alg_skcipher_init_session(ctx, alg, key, keylen, 0); .... return 0; } static int virtio_crypto_alg_skcipher_init_session( struct virtio_crypto_skcipher_ctx *ctx, uint32_t alg, const uint8_t *key, unsigned int keylen, int encrypt) { struct scatterlist outhdr, key_sg, inhdr, *sgs[3]; struct virtio_crypto *vcrypto = ctx->vcrypto; int op = encrypt ? VIRTIO_CRYPTO_OP_ENCRYPT : VIRTIO_CRYPTO_OP_DECRYPT; int err; unsigned int num_out = 0, num_in = 0; struct virtio_crypto_op_ctrl_req *ctrl; struct virtio_crypto_session_input *input; struct virtio_crypto_sym_create_session_req *sym_create_session; //ctrl_request结构体包含了上面三个结构体和一个completion struct virtio_crypto_ctrl_request *vc_ctrl_req; ........ /*第一步: 填充 ctrl header字段 */ ctrl = &vc_ctrl_req->ctrl; ctrl->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_CREATE_SESSION); ctrl->header.algo = cpu_to_le32(alg); /* Set the default dataqueue id to 0 */ ctrl->header.queue_id = 0; /*第二步:填充virtio_crypto_session_input字段,主要用来记录会话状态*/ input = &vc_ctrl_req->input; input->status = cpu_to_le32(VIRTIO_CRYPTO_ERR); /*第三步:填充cipher session的字段 */ sym_create_session = &ctrl->u.sym_create_session; sym_create_session->op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); sym_create_session->u.cipher.para.algo = ctrl->header.algo; sym_create_session->u.cipher.para.keylen = cpu_to_le32(keylen); sym_create_session->u.cipher.para.op = cpu_to_le32(op); /*初始化一个sg,把ctrl request先放进去*/ sg_init_one(&outhdr, ctrl, sizeof(*ctrl)); sgs[num_out++] = &outhdr; /*在把key放到sglist里*/ sg_init_one(&key_sg, cipher_key, keylen); sgs[num_out++] = &key_sg; /* 最后把任务状态的req放进去 */ sg_init_one(&inhdr, input, sizeof(*input)); sgs[num_out + num_in++] = &inhdr; /*然后提交到vcrypto设备*/ /*step1 调用virtqueue_add_sgs-->virtqueue_add,提交到control virtqueue*/ /*step2 调用virtqueue_kick,通知设备*/ /*step3 wait for compeletion */ err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req); if (err < 0) goto out; if (le32_to_cpu(input->status) != VIRTIO_CRYPTO_OK) { pr_err("virtio_crypto: Create session failed status: %u\n", le32_to_cpu(input->status)); err = -EINVAL; goto out; } if (encrypt) ctx->enc_sess_info.session_id = le64_to_cpu(input->session_id); else ctx->dec_sess_info.session_id = le64_to_cpu(input->session_id); err = 0; out: kfree(vc_ctrl_req); kfree_sensitive(cipher_key); return err; }
static int virtio_crypto_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; /* Use the first data virtqueue as default */ struct data_queue *data_vq = &vcrypto->data_vq[0]; if (!req->cryptlen) return 0; if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; /*填充virtio_crypto_sym_request结构体*/ vc_req->dataq = data_vq; vc_req->alg_cb = virtio_crypto_dataq_sym_callback; vc_sym_req->skcipher_ctx = ctx; vc_sym_req->skcipher_req = req; vc_sym_req->encrypt = true; /*用crypto框架的api发出请求*/ /*在初始化的时候通过crypto_engine_alloc_init_and_set为每条dataqueue添加了engine*/ return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req); }
把加密的请求提交给crypto_engine之后,之前注册加密算法的时候配置了
alg.op.do_one_request=virtio_crypto_skcipher_crypt_req
,因此crypto子系统会去调用这个注册的处理请求的函数,做实际的处理。int virtio_crypto_skcipher_crypt_req( struct crypto_engine *engine, void *vreq) { struct skcipher_request *req = container_of(vreq, struct skcipher_request, base); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct data_queue *data_vq = vc_req->dataq; int ret; /*实际的处理函数,具体解析见下*/ ret = __virtio_crypto_skcipher_do_req(vc_sym_req, req, data_vq); if (ret < 0) return ret; virtqueue_kick(data_vq->vq); return 0; } static int __virtio_crypto_skcipher_do_req(struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, struct data_queue *data_vq) { .... .... ... src_nents = sg_nents_for_len(req->src, req->cryptlen); if (src_nents < 0) { pr_err("Invalid number of src SG.\n"); return src_nents; } dst_nents = sg_nents(req->dst); pr_debug("virtio_crypto: Number of sgs (src_nents: %d, dst_nents: %d)\n", src_nents, dst_nents); /*总sg数量里还要包括一个两个头和一个初始化向量*/ /* Why 3? outhdr + iv + inhdr */ sg_total = src_nents + dst_nents + 3; sgs = kcalloc_node(sg_total, sizeof(*sgs), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!sgs) return -ENOMEM; req_data = kzalloc_node(sizeof(*req_data), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!req_data) { kfree(sgs); return -ENOMEM; } vc_req->req_data = req_data; vc_sym_req->type = VIRTIO_CRYPTO_SYM_OP_CIPHER; /* Head of operation */ if (vc_sym_req->encrypt) { req_data->header.session_id = cpu_to_le64(ctx->enc_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_ENCRYPT); } else { req_data->header.session_id = cpu_to_le64(ctx->dec_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DECRYPT); } req_data->u.sym_req.op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); req_data->u.sym_req.u.cipher.para.iv_len = cpu_to_le32(ivsize); req_data->u.sym_req.u.cipher.para.src_data_len = cpu_to_le32(req->cryptlen); dst_len = virtio_crypto_alg_sg_nents_length(req->dst); if (unlikely(dst_len > U32_MAX)) { pr_err("virtio_crypto: The dst_len is beyond U32_MAX\n"); err = -EINVAL; goto free; } dst_len = min_t(unsigned int, req->cryptlen, dst_len); pr_debug("virtio_crypto: src_len: %u, dst_len: %llu\n", req->cryptlen, dst_len); if (unlikely(req->cryptlen + dst_len + ivsize + sizeof(vc_req->status) > vcrypto->max_size)) { pr_err("virtio_crypto: The length is too big\n"); err = -EINVAL; goto free; } req_data->u.sym_req.u.cipher.para.dst_data_len = cpu_to_le32((uint32_t)dst_len); /* Outhdr */ sg_init_one(&outhdr, req_data, sizeof(*req_data)); sgs[num_out++] = &outhdr; /* IV */ /* * Avoid to do DMA from the stack, switch to using * dynamically-allocated for the IV */ /*初始化向量默认为0*/ iv = kzalloc_node(ivsize, GFP_ATOMIC, dev_to_node(&vcrypto->vdev->dev)); if (!iv) { err = -ENOMEM; goto free; } memcpy(iv, req->iv, ivsize); if (!vc_sym_req->encrypt) scatterwalk_map_and_copy(req->iv, req->src, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); sg_init_one(&iv_sg, iv, ivsize); sgs[num_out++] = &iv_sg; vc_sym_req->iv = iv; /* Source data */ for (sg = req->src; src_nents; sg = sg_next(sg), src_nents--) sgs[num_out++] = sg; /* Destination data */ for (sg = req->dst; sg; sg = sg_next(sg)) sgs[num_out + num_in++] = sg; /* Status */ sg_init_one(&status_sg, &vc_req->status, sizeof(vc_req->status)); sgs[num_out + num_in++] = &status_sg; vc_req->sgs = sgs; spin_lock_irqsave(&data_vq->lock, flags); /*调用virtqueue_add_sgs添加到virtqueue*/ err = virtqueue_add_sgs(data_vq->vq, sgs, num_out, num_in, vc_req, GFP_ATOMIC); /*通知dataqueue*/ virtqueue_kick(data_vq->vq); spin_unlock_irqrestore(&data_vq->lock, flags); if (unlikely(err < 0)) goto free_iv; return 0; free_iv: kfree_sensitive(iv); free: kfree_sensitive(req_data); kfree(sgs); return err; }
当任务通过virtioqueue框架完成后,virtio-crypto驱动负责回收会话:
static void virtio_crypto_dataq_sym_callback (struct virtio_crypto_request *vc_req, int len) { struct virtio_crypto_sym_request *vc_sym_req = container_of(vc_req, struct virtio_crypto_sym_request, base); struct skcipher_request *ablk_req; int error; /*根据设备写入的status字段做处理*/ /* Finish the encrypt or decrypt process */ if (vc_sym_req->type == VIRTIO_CRYPTO_SYM_OP_CIPHER) { switch (vc_req->status) { case VIRTIO_CRYPTO_OK: error = 0; break; case VIRTIO_CRYPTO_INVSESS: case VIRTIO_CRYPTO_ERR: error = -EINVAL; break; case VIRTIO_CRYPTO_BADMSG: error = -EBADMSG; break; default: error = -EIO; break; } ablk_req = vc_sym_req->skcipher_req; virtio_crypto_skcipher_finalize_req(vc_sym_req, ablk_req, error); } } /*释放request资源*/ static void virtio_crypto_skcipher_finalize_req( struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, int err) { if (vc_sym_req->encrypt) /*The scatterwalk_map_and_copy function 在两个散列表之间拷贝,就是把加密后的结果iv拷贝到dst里面.*/ scatterwalk_map_and_copy(req->iv, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); kfree_sensitive(vc_sym_req->iv); virtcrypto_clear_request(&vc_sym_req->base); /*最后让crypto子系统接管*/ crypto_finalize_skcipher_request(vc_sym_req->base.dataq->engine, req, err); }